A. Elsayed, M. M. K. Shehata, C. Godfrin, S. Kubicek, S. Massar, Y. Canvel, J. Jussot, G. Simion, M. Mongillo, D. Wan, B. Govoreanu, I. P. Radu, R. Li, P. Van Dorpe, K. De Greve
{"title":"利用工业 CMOS 制造低电荷噪声量子点","authors":"A. Elsayed, M. M. K. Shehata, C. Godfrin, S. Kubicek, S. Massar, Y. Canvel, J. Jussot, G. Simion, M. Mongillo, D. Wan, B. Govoreanu, I. P. Radu, R. Li, P. Van Dorpe, K. De Greve","doi":"10.1038/s41534-024-00864-3","DOIUrl":null,"url":null,"abstract":"<p>Silicon spin qubits are promising candidates for scalable quantum computers, due to their coherence and compatibility with CMOS technology. Advanced industrial processes ensure wafer-scale uniformity and high device yield, but traditional transistor processes cannot be directly transferred to qubit structures. To leverage the micro-electronics industry expertise, we customize a 300 mm wafer fabrication line for silicon MOS qubit integration. With careful optimization of the gate stack, we report uniform quantum dot operation at the Si/SiO<sub>2</sub> interface at mK temperature. We measure a record-low average noise with a value of 0.61 <span>\\({\\rm{\\mu }}{\\rm{eVH}}{{\\rm{z}}}^{-0.5}\\)</span> at 1 Hz and even below 0.1 <span>\\({\\rm{\\mu }}{\\rm{eVH}}{{\\rm{z}}}^{-0.5}\\)</span> for some operating conditions. Statistical analysis of the charge noise measurements show that the noise source can be described by a two-level fluctuator model. This reproducible low noise level, in combination with uniform operation of our quantum dots, marks CMOS manufactured spin qubits as a mature platform towards scalable high-fidelity qubits.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"17 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low charge noise quantum dots with industrial CMOS manufacturing\",\"authors\":\"A. Elsayed, M. M. K. Shehata, C. Godfrin, S. Kubicek, S. Massar, Y. Canvel, J. Jussot, G. Simion, M. Mongillo, D. Wan, B. Govoreanu, I. P. Radu, R. Li, P. Van Dorpe, K. De Greve\",\"doi\":\"10.1038/s41534-024-00864-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Silicon spin qubits are promising candidates for scalable quantum computers, due to their coherence and compatibility with CMOS technology. Advanced industrial processes ensure wafer-scale uniformity and high device yield, but traditional transistor processes cannot be directly transferred to qubit structures. To leverage the micro-electronics industry expertise, we customize a 300 mm wafer fabrication line for silicon MOS qubit integration. With careful optimization of the gate stack, we report uniform quantum dot operation at the Si/SiO<sub>2</sub> interface at mK temperature. We measure a record-low average noise with a value of 0.61 <span>\\\\({\\\\rm{\\\\mu }}{\\\\rm{eVH}}{{\\\\rm{z}}}^{-0.5}\\\\)</span> at 1 Hz and even below 0.1 <span>\\\\({\\\\rm{\\\\mu }}{\\\\rm{eVH}}{{\\\\rm{z}}}^{-0.5}\\\\)</span> for some operating conditions. Statistical analysis of the charge noise measurements show that the noise source can be described by a two-level fluctuator model. This reproducible low noise level, in combination with uniform operation of our quantum dots, marks CMOS manufactured spin qubits as a mature platform towards scalable high-fidelity qubits.</p>\",\"PeriodicalId\":19212,\"journal\":{\"name\":\"npj Quantum Information\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41534-024-00864-3\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00864-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Low charge noise quantum dots with industrial CMOS manufacturing
Silicon spin qubits are promising candidates for scalable quantum computers, due to their coherence and compatibility with CMOS technology. Advanced industrial processes ensure wafer-scale uniformity and high device yield, but traditional transistor processes cannot be directly transferred to qubit structures. To leverage the micro-electronics industry expertise, we customize a 300 mm wafer fabrication line for silicon MOS qubit integration. With careful optimization of the gate stack, we report uniform quantum dot operation at the Si/SiO2 interface at mK temperature. We measure a record-low average noise with a value of 0.61 \({\rm{\mu }}{\rm{eVH}}{{\rm{z}}}^{-0.5}\) at 1 Hz and even below 0.1 \({\rm{\mu }}{\rm{eVH}}{{\rm{z}}}^{-0.5}\) for some operating conditions. Statistical analysis of the charge noise measurements show that the noise source can be described by a two-level fluctuator model. This reproducible low noise level, in combination with uniform operation of our quantum dots, marks CMOS manufactured spin qubits as a mature platform towards scalable high-fidelity qubits.
期刊介绍:
The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.