太阳能辅助甲醇蒸汽转化系统研究:运行因素筛选和计算流体力学数据驱动预测

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS Solar Energy Materials and Solar Cells Pub Date : 2024-07-20 DOI:10.1016/j.solmat.2024.113044
{"title":"太阳能辅助甲醇蒸汽转化系统研究:运行因素筛选和计算流体力学数据驱动预测","authors":"","doi":"10.1016/j.solmat.2024.113044","DOIUrl":null,"url":null,"abstract":"<div><p>The development of solar-to-fuel technologies has received significant attention while facing the growing interest in clean energy production. To accurately evaluate and optimize the solar-assisted thermochemical hydrogen production process, a reliable prediction method that ensures stable accuracy is essential. We utilized a gray correlation analysis (GRA) and a multi-objective genetic algorithm (GA) model to optimize the operating parameters of a methanol steam reforming system. Computational fluid dynamics simulations provided the response values for key parameters, including reactant conversion rate, syngas product yield, and CO selectivity. Additionally, the Taguchi’s method and analysis of variance (ANOVA) were employed to assess the impact of operating parameters on these target outputs. The results demonstrate that the proposed GA-Back propagation neural networks (GA-BPNN) model significantly outperforms traditional prediction models in accuracy, exhibiting robustness and generalization. The mean absolute percentage error (MAPE) of methanol conversion, hydrogen yield, and CO selectivity is 3.20 %, 4.69 % and 3.53 %. The GRA-GA-BPNN model shows a slight decline, while still maintains reliable prediction accuracy, with the MAPE value of 5.76 %, 5.11 %, and 10.4 %. This operational factor screening-based prediction model proves useful for large-scale data-driven predictions of solar thermochemical systems, especially under complex and variable external conditions and internal human interventions.</p></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of a solar-assisted methanol steam reforming system: Operational factor screening and computational fluid dynamics data-driven prediction\",\"authors\":\"\",\"doi\":\"10.1016/j.solmat.2024.113044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of solar-to-fuel technologies has received significant attention while facing the growing interest in clean energy production. To accurately evaluate and optimize the solar-assisted thermochemical hydrogen production process, a reliable prediction method that ensures stable accuracy is essential. We utilized a gray correlation analysis (GRA) and a multi-objective genetic algorithm (GA) model to optimize the operating parameters of a methanol steam reforming system. Computational fluid dynamics simulations provided the response values for key parameters, including reactant conversion rate, syngas product yield, and CO selectivity. Additionally, the Taguchi’s method and analysis of variance (ANOVA) were employed to assess the impact of operating parameters on these target outputs. The results demonstrate that the proposed GA-Back propagation neural networks (GA-BPNN) model significantly outperforms traditional prediction models in accuracy, exhibiting robustness and generalization. The mean absolute percentage error (MAPE) of methanol conversion, hydrogen yield, and CO selectivity is 3.20 %, 4.69 % and 3.53 %. The GRA-GA-BPNN model shows a slight decline, while still maintains reliable prediction accuracy, with the MAPE value of 5.76 %, 5.11 %, and 10.4 %. This operational factor screening-based prediction model proves useful for large-scale data-driven predictions of solar thermochemical systems, especially under complex and variable external conditions and internal human interventions.</p></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927024824003568\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824003568","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

随着人们对清洁能源生产的兴趣与日俱增,太阳能转化为燃料技术的发展受到了极大关注。为了准确评估和优化太阳能辅助热化学制氢工艺,必须有一种可靠的预测方法来确保稳定的准确性。我们利用灰色关联分析(GRA)和多目标遗传算法(GA)模型来优化甲醇蒸汽转化系统的运行参数。计算流体动力学模拟提供了关键参数的响应值,包括反应物转化率、合成气产品产量和 CO 选择性。此外,还采用了田口方法和方差分析(ANOVA)来评估操作参数对这些目标产出的影响。结果表明,所提出的 GA-BPNN 模型在准确性、鲁棒性和泛化方面明显优于传统预测模型。甲醇转化率、氢气产量和 CO 选择性的平均绝对百分比误差 (MAPE) 分别为 3.20 %、4.69 % 和 3.53 %。GRA-GA-BPNN 模型的 MAPE 值分别为 5.76 %、5.11 % 和 10.4 %,虽然略有下降,但仍然保持了可靠的预测精度。事实证明,这种基于运行因素筛选的预测模型可用于太阳能热化学系统的大规模数据驱动预测,尤其是在复杂多变的外部条件和内部人为干预的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of a solar-assisted methanol steam reforming system: Operational factor screening and computational fluid dynamics data-driven prediction

The development of solar-to-fuel technologies has received significant attention while facing the growing interest in clean energy production. To accurately evaluate and optimize the solar-assisted thermochemical hydrogen production process, a reliable prediction method that ensures stable accuracy is essential. We utilized a gray correlation analysis (GRA) and a multi-objective genetic algorithm (GA) model to optimize the operating parameters of a methanol steam reforming system. Computational fluid dynamics simulations provided the response values for key parameters, including reactant conversion rate, syngas product yield, and CO selectivity. Additionally, the Taguchi’s method and analysis of variance (ANOVA) were employed to assess the impact of operating parameters on these target outputs. The results demonstrate that the proposed GA-Back propagation neural networks (GA-BPNN) model significantly outperforms traditional prediction models in accuracy, exhibiting robustness and generalization. The mean absolute percentage error (MAPE) of methanol conversion, hydrogen yield, and CO selectivity is 3.20 %, 4.69 % and 3.53 %. The GRA-GA-BPNN model shows a slight decline, while still maintains reliable prediction accuracy, with the MAPE value of 5.76 %, 5.11 %, and 10.4 %. This operational factor screening-based prediction model proves useful for large-scale data-driven predictions of solar thermochemical systems, especially under complex and variable external conditions and internal human interventions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
期刊最新文献
Interface-enhanced germanium selenide solar cells comprising an ultrathin and uniform antimony selenide buffer layer via hydrothermal approach Thermally driven memory flexible phase change hydrogel for solar energy efficient building thermal management Integrating AgNPs-decorated phase change microcapsules into UV-cured PUA with enhanced thermal conductivity for solar thermal energy conversion and storage Influence of module types on theoretical efficiency and aesthetics of colored photovoltaic modules with luminescent down-shifting layers Grain boundary barrier model can explain the beneficial effect of alkali doping in Cu(In,Ga)Se2 solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1