利用粒子群优化技术对腹部热疗专用 MRgHIFU 应用器进行计算机辅助术中定位

IF 2.7 Q3 ENGINEERING, BIOMEDICAL IEEE Open Journal of Engineering in Medicine and Biology Pub Date : 2024-06-05 DOI:10.1109/OJEMB.2024.3410118
Yacine M'Rad;Caecilia Charbonnier;Marcelo Elias de Oliveira;Pauline Coralie Guillemin;Lindsey Alexandra Crowe;Thibaud Kössler;Pierre-Alexandre Poletti;Sana Boudabbous;Alexis Ricoeur;Rares Salomir;Orane Lorton
{"title":"利用粒子群优化技术对腹部热疗专用 MRgHIFU 应用器进行计算机辅助术中定位","authors":"Yacine M'Rad;Caecilia Charbonnier;Marcelo Elias de Oliveira;Pauline Coralie Guillemin;Lindsey Alexandra Crowe;Thibaud Kössler;Pierre-Alexandre Poletti;Sana Boudabbous;Alexis Ricoeur;Rares Salomir;Orane Lorton","doi":"10.1109/OJEMB.2024.3410118","DOIUrl":null,"url":null,"abstract":"Purpose: Transducer positioning for liver ablation by magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU) is challenging due to the presence of air-filled organs or bones on the beam path. This paper presents a software tool developed to optimize the positioning of a HIFU transducer dedicated to abdominal thermal therapy, to maximize the treatment's efficiency while minimizing the near-field risk. Methods: A software tool was developed to determine the theoretical optimal position (TOP) of the transducer based on the minimization of a cost function using the particle swarm optimization (PSO). After an initialization phase and a manual segmentation of the abdomen of 5 pigs, the program randomly generates particles with 2 degrees of freedom and iteratively minimizes the cost function of the particles considering 3 parameters weighted according to their criticality. New particles are generated around the best position obtained at the previous step and the process is repeated until the optimal position of the transducer is reached. MR imaging data from \n<italic>in vivo</i>\n HIFU ablation in pig livers was used for ground truth comparison between the TOP and the experimental position (EP). Results: As compared to the manual EP, the rotation difference with the TOP was on average −3.1 ± 7.1° and the distance difference was on average −7.1 ± 5.4 mm. The computational time to suggest the TOP was 20s. The software tool is modulable and demonstrated consistency and robustness when repeating the calculation and changing the initial position of the transducer.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10549770","citationCount":"0","resultStr":"{\"title\":\"Computer-Aided Intra-Operatory Positioning of an MRgHIFU Applicator Dedicated to Abdominal Thermal Therapy Using Particle Swarm Optimization\",\"authors\":\"Yacine M'Rad;Caecilia Charbonnier;Marcelo Elias de Oliveira;Pauline Coralie Guillemin;Lindsey Alexandra Crowe;Thibaud Kössler;Pierre-Alexandre Poletti;Sana Boudabbous;Alexis Ricoeur;Rares Salomir;Orane Lorton\",\"doi\":\"10.1109/OJEMB.2024.3410118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose: Transducer positioning for liver ablation by magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU) is challenging due to the presence of air-filled organs or bones on the beam path. This paper presents a software tool developed to optimize the positioning of a HIFU transducer dedicated to abdominal thermal therapy, to maximize the treatment's efficiency while minimizing the near-field risk. Methods: A software tool was developed to determine the theoretical optimal position (TOP) of the transducer based on the minimization of a cost function using the particle swarm optimization (PSO). After an initialization phase and a manual segmentation of the abdomen of 5 pigs, the program randomly generates particles with 2 degrees of freedom and iteratively minimizes the cost function of the particles considering 3 parameters weighted according to their criticality. New particles are generated around the best position obtained at the previous step and the process is repeated until the optimal position of the transducer is reached. MR imaging data from \\n<italic>in vivo</i>\\n HIFU ablation in pig livers was used for ground truth comparison between the TOP and the experimental position (EP). Results: As compared to the manual EP, the rotation difference with the TOP was on average −3.1 ± 7.1° and the distance difference was on average −7.1 ± 5.4 mm. The computational time to suggest the TOP was 20s. The software tool is modulable and demonstrated consistency and robustness when repeating the calculation and changing the initial position of the transducer.\",\"PeriodicalId\":33825,\"journal\":{\"name\":\"IEEE Open Journal of Engineering in Medicine and Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10549770\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Engineering in Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10549770/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Engineering in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10549770/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:磁共振引导下高强度聚焦超声(MRgHIFU)肝脏消融的换能器定位具有挑战性,因为在射束路径上存在充满空气的器官或骨骼。本文介绍了一种软件工具,用于优化腹部热疗专用 HIFU 传感器的定位,以最大限度地提高治疗效率,同时最大限度地降低近场风险。方法:利用粒子群优化(PSO)技术,在最小化成本函数的基础上,开发了一种软件工具来确定换能器的理论最佳位置(TOP)。在初始化阶段和手动分割 5 头猪的腹部后,程序随机生成具有 2 个自由度的粒子,并根据粒子的临界值加权考虑 3 个参数,反复最小化粒子的成本函数。新粒子围绕上一步获得的最佳位置生成,该过程重复进行,直到达到换能器的最佳位置。猪肝脏活体 HIFU 消融的磁共振成像数据被用来比较 TOP 位置和实验位置 (EP) 之间的基本真实情况。结果:与手动 EP 相比,TOP 的旋转差平均为 -3.1 ± 7.1°,距离差平均为 -7.1 ± 5.4 mm。建议 TOP 的计算时间为 20 秒。该软件工具是可修改的,在重复计算和改变传感器初始位置时表现出一致性和稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computer-Aided Intra-Operatory Positioning of an MRgHIFU Applicator Dedicated to Abdominal Thermal Therapy Using Particle Swarm Optimization
Purpose: Transducer positioning for liver ablation by magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU) is challenging due to the presence of air-filled organs or bones on the beam path. This paper presents a software tool developed to optimize the positioning of a HIFU transducer dedicated to abdominal thermal therapy, to maximize the treatment's efficiency while minimizing the near-field risk. Methods: A software tool was developed to determine the theoretical optimal position (TOP) of the transducer based on the minimization of a cost function using the particle swarm optimization (PSO). After an initialization phase and a manual segmentation of the abdomen of 5 pigs, the program randomly generates particles with 2 degrees of freedom and iteratively minimizes the cost function of the particles considering 3 parameters weighted according to their criticality. New particles are generated around the best position obtained at the previous step and the process is repeated until the optimal position of the transducer is reached. MR imaging data from in vivo HIFU ablation in pig livers was used for ground truth comparison between the TOP and the experimental position (EP). Results: As compared to the manual EP, the rotation difference with the TOP was on average −3.1 ± 7.1° and the distance difference was on average −7.1 ± 5.4 mm. The computational time to suggest the TOP was 20s. The software tool is modulable and demonstrated consistency and robustness when repeating the calculation and changing the initial position of the transducer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.50
自引率
3.40%
发文量
20
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of Engineering in Medicine and Biology (IEEE OJEMB) is dedicated to serving the community of innovators in medicine, technology, and the sciences, with the core goal of advancing the highest-quality interdisciplinary research between these disciplines. The journal firmly believes that the future of medicine depends on close collaboration between biology and technology, and that fostering interaction between these fields is an important way to advance key discoveries that can improve clinical care.IEEE OJEMB is a gold open access journal in which the authors retain the copyright to their papers and readers have free access to the full text and PDFs on the IEEE Xplore® Digital Library. However, authors are required to pay an article processing fee at the time their paper is accepted for publication, using to cover the cost of publication.
期刊最新文献
Corrections to “Gastric Section Correlation Network for Gastric Precancerous Lesion Diagnosis” IEEE Open Journal of Engineering in Medicine and Biology Editorial Board Information IEEE Open Journal of Engineering in Medicine and Biology Author Instructions Guest Editorial: Introduction to the Special Series on Advances in Cardiovascular and Respiratory Systems Engineering Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1