使用双功能碳点掺杂分子印迹聚合物检测和吸附牛奶中的氟苯尼考。

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-07-22 DOI:10.1002/elps.202400053
Weiyan Li, Chuansheng Sun, Haiping Wang, Qingyan Bai, Yi Xu, Chunmiao Bo, Junjie Ou
{"title":"使用双功能碳点掺杂分子印迹聚合物检测和吸附牛奶中的氟苯尼考。","authors":"Weiyan Li, Chuansheng Sun, Haiping Wang, Qingyan Bai, Yi Xu, Chunmiao Bo, Junjie Ou","doi":"10.1002/elps.202400053","DOIUrl":null,"url":null,"abstract":"<p><p>Detection of florfenicol (FF) residues in animal-derived foods, as one of the most widely used antibiotics, is critically important to food safety. The fluorescent molecularly imprinted polymer (MIP) was synthesized by surface-initiated atom transfer radical polymerization technique with poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) microspheres, 4-vinylpyridine, ethylene glycol dimethacrylate, and FF as the matrix, functional monomer, crosslinker, and template molecule, respectively. Meanwhile, N-S co-doped carbon dot (CD) was synthesized with triammonium citrate and thiourea as precursors under microwave irradiation at 400 W for 2.5 min and then integrated into FF-MIP to obtain CD@FF-MIP. For comparison, non-imprinted polymer (NIP) without FF was also prepared. The adsorption capacity of CD@FF-MIP to FF reached 53.1 mg g<sup>-1</sup>, which was higher than that of FF-MIP (34.7 mg g<sup>-1</sup>), whereas the adsorption capacity of NIP was only 17.3 mg g<sup>-1</sup>. The adsorption equilibrium of three materials was reached within 50 min. Particularly, CD@FF-MIP exhibited an excellent fluorescence quenching response to FF in the concentration range of 3-50 µmol L<sup>-1</sup>. As a result, CD@FF-MIP was successfully utilized to extract FF in milk samples, which were analyzed by high-performance liquid chromatography. The standard recoveries were 95.8%-98.2%, and the relative standard deviation was 1.6%-4.2%. The method showed the advantages of simple operation, high sensitivity, excellent selectivity, and low cost, and also demonstrated a great application prospect in food detection.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection and adsorption of florfenicol in milk using bifunctional carbon dot-doped molecularly imprinted polymers.\",\"authors\":\"Weiyan Li, Chuansheng Sun, Haiping Wang, Qingyan Bai, Yi Xu, Chunmiao Bo, Junjie Ou\",\"doi\":\"10.1002/elps.202400053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Detection of florfenicol (FF) residues in animal-derived foods, as one of the most widely used antibiotics, is critically important to food safety. The fluorescent molecularly imprinted polymer (MIP) was synthesized by surface-initiated atom transfer radical polymerization technique with poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) microspheres, 4-vinylpyridine, ethylene glycol dimethacrylate, and FF as the matrix, functional monomer, crosslinker, and template molecule, respectively. Meanwhile, N-S co-doped carbon dot (CD) was synthesized with triammonium citrate and thiourea as precursors under microwave irradiation at 400 W for 2.5 min and then integrated into FF-MIP to obtain CD@FF-MIP. For comparison, non-imprinted polymer (NIP) without FF was also prepared. The adsorption capacity of CD@FF-MIP to FF reached 53.1 mg g<sup>-1</sup>, which was higher than that of FF-MIP (34.7 mg g<sup>-1</sup>), whereas the adsorption capacity of NIP was only 17.3 mg g<sup>-1</sup>. The adsorption equilibrium of three materials was reached within 50 min. Particularly, CD@FF-MIP exhibited an excellent fluorescence quenching response to FF in the concentration range of 3-50 µmol L<sup>-1</sup>. As a result, CD@FF-MIP was successfully utilized to extract FF in milk samples, which were analyzed by high-performance liquid chromatography. The standard recoveries were 95.8%-98.2%, and the relative standard deviation was 1.6%-4.2%. The method showed the advantages of simple operation, high sensitivity, excellent selectivity, and low cost, and also demonstrated a great application prospect in food detection.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/elps.202400053\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/elps.202400053","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

作为最广泛使用的抗生素之一,检测动物源食品中氟苯尼考(FF)的残留量对食品安全至关重要。利用表面引发原子转移自由基聚合技术,以聚(甲基丙烯酸缩水甘油酯-甲基丙烯酸乙二醇酯)微球、4-乙烯基吡啶、甲基丙烯酸乙二醇酯和氟苯尼考为基质、功能单体、交联剂和模板分子,合成了荧光分子印迹聚合物(MIP)。同时,以柠檬酸三铵和硫脲为前驱体,在 400 W 的微波辐照下 2.5 分钟合成了 N-S 共掺杂碳点(CD),然后将其整合到 FF-MIP 中,得到 CD@FF-MIP。为了进行比较,还制备了不含 FF 的非压印聚合物(NIP)。CD@FF-MIP 对 FF 的吸附容量达到 53.1 mg g-1,高于 FF-MIP 的吸附容量(34.7 mg g-1),而 NIP 的吸附容量仅为 17.3 mg g-1。三种材料在 50 分钟内达到了吸附平衡。特别是,在 3-50 µmol L-1 的浓度范围内,CD@FF-MIP 对 FF 具有极好的荧光淬灭响应。因此,CD@FF-MIP 被成功用于提取牛奶样品中的 FF,并通过高效液相色谱法进行分析。标准回收率为95.8%-98.2%,相对标准偏差为1.6%-4.2%。该方法具有操作简单、灵敏度高、选择性好、成本低等优点,在食品检测中具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection and adsorption of florfenicol in milk using bifunctional carbon dot-doped molecularly imprinted polymers.

Detection of florfenicol (FF) residues in animal-derived foods, as one of the most widely used antibiotics, is critically important to food safety. The fluorescent molecularly imprinted polymer (MIP) was synthesized by surface-initiated atom transfer radical polymerization technique with poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) microspheres, 4-vinylpyridine, ethylene glycol dimethacrylate, and FF as the matrix, functional monomer, crosslinker, and template molecule, respectively. Meanwhile, N-S co-doped carbon dot (CD) was synthesized with triammonium citrate and thiourea as precursors under microwave irradiation at 400 W for 2.5 min and then integrated into FF-MIP to obtain CD@FF-MIP. For comparison, non-imprinted polymer (NIP) without FF was also prepared. The adsorption capacity of CD@FF-MIP to FF reached 53.1 mg g-1, which was higher than that of FF-MIP (34.7 mg g-1), whereas the adsorption capacity of NIP was only 17.3 mg g-1. The adsorption equilibrium of three materials was reached within 50 min. Particularly, CD@FF-MIP exhibited an excellent fluorescence quenching response to FF in the concentration range of 3-50 µmol L-1. As a result, CD@FF-MIP was successfully utilized to extract FF in milk samples, which were analyzed by high-performance liquid chromatography. The standard recoveries were 95.8%-98.2%, and the relative standard deviation was 1.6%-4.2%. The method showed the advantages of simple operation, high sensitivity, excellent selectivity, and low cost, and also demonstrated a great application prospect in food detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1