Santanu Maji, Amit Kumar, Luni Emdad, Paul B Fisher, Swadesh K Das
{"title":"前列腺癌骨转移的分子图谱。","authors":"Santanu Maji, Amit Kumar, Luni Emdad, Paul B Fisher, Swadesh K Das","doi":"10.1016/bs.acr.2024.04.007","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate cancer (PC) has a high propensity to develop bone metastases, causing severe pain and pathological fractures that profoundly impact a patients' normal functions. Current clinical intervention is mainly palliative focused on pain management, and tumor progression is refractory to standard therapeutic regimens. This limited treatment efficacy is at least partially due to a lack of comprehensive understanding of the molecular landscape of the disease pathology, along with the intensive overlapping of physiological and pathological molecular signaling. The niche is overwhelmed with diverse cell types with inter- and intra-heterogeneity, along with growth factor-enriched cells that are supportive of invading cell proliferation, providing an additional layer of complexity. This review seeks to provide molecular insights into mechanisms underlying PC bone metastasis development and progression.</p>","PeriodicalId":94294,"journal":{"name":"Advances in cancer research","volume":"161 ","pages":"321-365"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular landscape of prostate cancer bone metastasis.\",\"authors\":\"Santanu Maji, Amit Kumar, Luni Emdad, Paul B Fisher, Swadesh K Das\",\"doi\":\"10.1016/bs.acr.2024.04.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prostate cancer (PC) has a high propensity to develop bone metastases, causing severe pain and pathological fractures that profoundly impact a patients' normal functions. Current clinical intervention is mainly palliative focused on pain management, and tumor progression is refractory to standard therapeutic regimens. This limited treatment efficacy is at least partially due to a lack of comprehensive understanding of the molecular landscape of the disease pathology, along with the intensive overlapping of physiological and pathological molecular signaling. The niche is overwhelmed with diverse cell types with inter- and intra-heterogeneity, along with growth factor-enriched cells that are supportive of invading cell proliferation, providing an additional layer of complexity. This review seeks to provide molecular insights into mechanisms underlying PC bone metastasis development and progression.</p>\",\"PeriodicalId\":94294,\"journal\":{\"name\":\"Advances in cancer research\",\"volume\":\"161 \",\"pages\":\"321-365\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in cancer research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.acr.2024.04.007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in cancer research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.acr.2024.04.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
前列腺癌(PC)极易发生骨转移,引起剧烈疼痛和病理性骨折,严重影响患者的正常功能。目前的临床干预主要集中在止痛的姑息治疗上,而肿瘤的进展对标准治疗方案具有耐药性。这种有限的治疗效果至少部分是由于缺乏对疾病病理分子结构的全面了解,以及生理和病理分子信号的密集重叠。龛内细胞类型多样,相互之间和内部存在异质性,富含生长因子的细胞支持入侵细胞的增殖,从而增加了龛内细胞的复杂性。本综述旨在从分子角度探讨 PC 骨转移发生和发展的内在机制。
Molecular landscape of prostate cancer bone metastasis.
Prostate cancer (PC) has a high propensity to develop bone metastases, causing severe pain and pathological fractures that profoundly impact a patients' normal functions. Current clinical intervention is mainly palliative focused on pain management, and tumor progression is refractory to standard therapeutic regimens. This limited treatment efficacy is at least partially due to a lack of comprehensive understanding of the molecular landscape of the disease pathology, along with the intensive overlapping of physiological and pathological molecular signaling. The niche is overwhelmed with diverse cell types with inter- and intra-heterogeneity, along with growth factor-enriched cells that are supportive of invading cell proliferation, providing an additional layer of complexity. This review seeks to provide molecular insights into mechanisms underlying PC bone metastasis development and progression.