Asghar Ali , Sobin Mathew , Shahbaz Ahmad , Vadim Ialyshev , Faisal Mustafa , Ganjaboy Boltaev , Naveed A. Abbasi , Ali.S. Alnaser
{"title":"利用飞秒激光轻松调整二氧化碳电还原过程中铜对长链产物的选择性","authors":"Asghar Ali , Sobin Mathew , Shahbaz Ahmad , Vadim Ialyshev , Faisal Mustafa , Ganjaboy Boltaev , Naveed A. Abbasi , Ali.S. Alnaser","doi":"10.1016/j.jcou.2024.102880","DOIUrl":null,"url":null,"abstract":"<div><p>In the quest to mitigate excessive CO<sub>2</sub> emissions, the electrochemical reduction of CO<sub>2</sub> (eCO<sub>2</sub>R) into multi-carbon fuels and vital chemical precursors emerges as a compelling strategy. Meticulous control of the C–C coupling on a catalyst surface is a grand challenge in the selective production of desired C<sub>2+</sub> products. Ethane and propanol are among the most desirable C<sub>2+</sub> products in the gas and liquid phase, respectively. Herein, we demonstrate facile femtosecond laser-enabled tuning of Cu selectivity towards ethane and propanol. The laser-enabled tailoring of the Cu surface induces a shift from C<sub>1</sub> products to ethane and propanol. This shift in product composition is attributed to the concurrent creation of hierarchical porous structures, the stabilization of {111}, {200}, and {220} Cu<sub>2</sub>O facets, and the promotion of the Cu<sup>1+</sup> oxidation state. These alterations collectively enhance the adsorption strength, leading to an increased propensity for C-C coupling and, consequently, an elevated selectivity toward C<sub>2+</sub> products.</p></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":"85 ","pages":"Article 102880"},"PeriodicalIF":7.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212982024002154/pdfft?md5=70f8e22d139f78b238ba712fa1462495&pid=1-s2.0-S2212982024002154-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Femtosecond laser-enabled facile tuning of Cu selectivity towards long-chain products in CO2 electroreduction\",\"authors\":\"Asghar Ali , Sobin Mathew , Shahbaz Ahmad , Vadim Ialyshev , Faisal Mustafa , Ganjaboy Boltaev , Naveed A. Abbasi , Ali.S. Alnaser\",\"doi\":\"10.1016/j.jcou.2024.102880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the quest to mitigate excessive CO<sub>2</sub> emissions, the electrochemical reduction of CO<sub>2</sub> (eCO<sub>2</sub>R) into multi-carbon fuels and vital chemical precursors emerges as a compelling strategy. Meticulous control of the C–C coupling on a catalyst surface is a grand challenge in the selective production of desired C<sub>2+</sub> products. Ethane and propanol are among the most desirable C<sub>2+</sub> products in the gas and liquid phase, respectively. Herein, we demonstrate facile femtosecond laser-enabled tuning of Cu selectivity towards ethane and propanol. The laser-enabled tailoring of the Cu surface induces a shift from C<sub>1</sub> products to ethane and propanol. This shift in product composition is attributed to the concurrent creation of hierarchical porous structures, the stabilization of {111}, {200}, and {220} Cu<sub>2</sub>O facets, and the promotion of the Cu<sup>1+</sup> oxidation state. These alterations collectively enhance the adsorption strength, leading to an increased propensity for C-C coupling and, consequently, an elevated selectivity toward C<sub>2+</sub> products.</p></div>\",\"PeriodicalId\":350,\"journal\":{\"name\":\"Journal of CO2 Utilization\",\"volume\":\"85 \",\"pages\":\"Article 102880\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2212982024002154/pdfft?md5=70f8e22d139f78b238ba712fa1462495&pid=1-s2.0-S2212982024002154-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of CO2 Utilization\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212982024002154\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of CO2 Utilization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212982024002154","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Femtosecond laser-enabled facile tuning of Cu selectivity towards long-chain products in CO2 electroreduction
In the quest to mitigate excessive CO2 emissions, the electrochemical reduction of CO2 (eCO2R) into multi-carbon fuels and vital chemical precursors emerges as a compelling strategy. Meticulous control of the C–C coupling on a catalyst surface is a grand challenge in the selective production of desired C2+ products. Ethane and propanol are among the most desirable C2+ products in the gas and liquid phase, respectively. Herein, we demonstrate facile femtosecond laser-enabled tuning of Cu selectivity towards ethane and propanol. The laser-enabled tailoring of the Cu surface induces a shift from C1 products to ethane and propanol. This shift in product composition is attributed to the concurrent creation of hierarchical porous structures, the stabilization of {111}, {200}, and {220} Cu2O facets, and the promotion of the Cu1+ oxidation state. These alterations collectively enhance the adsorption strength, leading to an increased propensity for C-C coupling and, consequently, an elevated selectivity toward C2+ products.
期刊介绍:
The Journal of CO2 Utilization offers a single, multi-disciplinary, scholarly platform for the exchange of novel research in the field of CO2 re-use for scientists and engineers in chemicals, fuels and materials.
The emphasis is on the dissemination of leading-edge research from basic science to the development of new processes, technologies and applications.
The Journal of CO2 Utilization publishes original peer-reviewed research papers, reviews, and short communications, including experimental and theoretical work, and analytical models and simulations.