{"title":"用于制备 APT 和 TEM 试样的激光微加工热效应研究:建模与实验研究","authors":"Anup Sharma , Shuo Zhang , Jing Fu , Deepak Marla","doi":"10.1016/j.ultramic.2024.114009","DOIUrl":null,"url":null,"abstract":"<div><p>Laser micromachining can serve as a coarse machining step during sample preparation for high-resolution characterization methods leading to swift sample preparation. However, selecting the right laser parameters is crucial to minimize the heat-affected zone, which can potentially compromise the microstructure of the specimen. This study focuses on evaluating the size of heat-affected zone in laser annular milling, aiming to ascertain a minimal scan diameter that safeguards the inner region of micropillars against thermal damage. A computational model based on the finite element method was utilized to simulate the laser heating process. To validate the simulation results, a picosecond pulsed laser is then used to machine the micropillars of Al and Si. The laser-machined samples were subjected to surface and microstructural analysis using Scanning Electron Microscope (SEM) and Electron Backscatter Diffraction (EBSD) scans. The length of heat affected zone obtained from simulations was approximately 6 <span><math><mi>μ</mi></math></span>m for silicon and 12 <span><math><mi>μ</mi></math></span>m for aluminum. The diameter of micropillars formed with laser machining was 10 <span><math><mi>μ</mi></math></span>m for silicon 26 <span><math><mi>μ</mi></math></span>m for aluminum. The core of the pillars was preserved with less than one degree of microstructural misorientations making it suitable for further processing for preparing specimens for techniques like APT and TEM. For silicon micropillars, the preserved central region has a diameter of 6 <span><math><mi>μ</mi></math></span>m and for aluminum its around 20–24 <span><math><mi>μ</mi></math></span>m. Additionally, the study determines the minimum scan diameter that can be achieved using the given laser machining setup across a range of common materials.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"265 ","pages":"Article 114009"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of thermal effects of laser micromachining for APT and TEM specimen preparation: A modeling and experimental study\",\"authors\":\"Anup Sharma , Shuo Zhang , Jing Fu , Deepak Marla\",\"doi\":\"10.1016/j.ultramic.2024.114009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Laser micromachining can serve as a coarse machining step during sample preparation for high-resolution characterization methods leading to swift sample preparation. However, selecting the right laser parameters is crucial to minimize the heat-affected zone, which can potentially compromise the microstructure of the specimen. This study focuses on evaluating the size of heat-affected zone in laser annular milling, aiming to ascertain a minimal scan diameter that safeguards the inner region of micropillars against thermal damage. A computational model based on the finite element method was utilized to simulate the laser heating process. To validate the simulation results, a picosecond pulsed laser is then used to machine the micropillars of Al and Si. The laser-machined samples were subjected to surface and microstructural analysis using Scanning Electron Microscope (SEM) and Electron Backscatter Diffraction (EBSD) scans. The length of heat affected zone obtained from simulations was approximately 6 <span><math><mi>μ</mi></math></span>m for silicon and 12 <span><math><mi>μ</mi></math></span>m for aluminum. The diameter of micropillars formed with laser machining was 10 <span><math><mi>μ</mi></math></span>m for silicon 26 <span><math><mi>μ</mi></math></span>m for aluminum. The core of the pillars was preserved with less than one degree of microstructural misorientations making it suitable for further processing for preparing specimens for techniques like APT and TEM. For silicon micropillars, the preserved central region has a diameter of 6 <span><math><mi>μ</mi></math></span>m and for aluminum its around 20–24 <span><math><mi>μ</mi></math></span>m. Additionally, the study determines the minimum scan diameter that can be achieved using the given laser machining setup across a range of common materials.</p></div>\",\"PeriodicalId\":23439,\"journal\":{\"name\":\"Ultramicroscopy\",\"volume\":\"265 \",\"pages\":\"Article 114009\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultramicroscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304399124000883\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultramicroscopy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304399124000883","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROSCOPY","Score":null,"Total":0}
Investigation of thermal effects of laser micromachining for APT and TEM specimen preparation: A modeling and experimental study
Laser micromachining can serve as a coarse machining step during sample preparation for high-resolution characterization methods leading to swift sample preparation. However, selecting the right laser parameters is crucial to minimize the heat-affected zone, which can potentially compromise the microstructure of the specimen. This study focuses on evaluating the size of heat-affected zone in laser annular milling, aiming to ascertain a minimal scan diameter that safeguards the inner region of micropillars against thermal damage. A computational model based on the finite element method was utilized to simulate the laser heating process. To validate the simulation results, a picosecond pulsed laser is then used to machine the micropillars of Al and Si. The laser-machined samples were subjected to surface and microstructural analysis using Scanning Electron Microscope (SEM) and Electron Backscatter Diffraction (EBSD) scans. The length of heat affected zone obtained from simulations was approximately 6 m for silicon and 12 m for aluminum. The diameter of micropillars formed with laser machining was 10 m for silicon 26 m for aluminum. The core of the pillars was preserved with less than one degree of microstructural misorientations making it suitable for further processing for preparing specimens for techniques like APT and TEM. For silicon micropillars, the preserved central region has a diameter of 6 m and for aluminum its around 20–24 m. Additionally, the study determines the minimum scan diameter that can be achieved using the given laser machining setup across a range of common materials.
期刊介绍:
Ultramicroscopy is an established journal that provides a forum for the publication of original research papers, invited reviews and rapid communications. The scope of Ultramicroscopy is to describe advances in instrumentation, methods and theory related to all modes of microscopical imaging, diffraction and spectroscopy in the life and physical sciences.