Chinese knot inspired isotropic linear scanning method for improved imaging performance in AFM

IF 2.1 3区 工程技术 Q2 MICROSCOPY Ultramicroscopy Pub Date : 2024-11-18 DOI:10.1016/j.ultramic.2024.114081
Xiaolong Jia , Haitao Wu , Qubo Jiang , Qilin Zeng , Wentao Zhang , Yanding Qin
{"title":"Chinese knot inspired isotropic linear scanning method for improved imaging performance in AFM","authors":"Xiaolong Jia ,&nbsp;Haitao Wu ,&nbsp;Qubo Jiang ,&nbsp;Qilin Zeng ,&nbsp;Wentao Zhang ,&nbsp;Yanding Qin","doi":"10.1016/j.ultramic.2024.114081","DOIUrl":null,"url":null,"abstract":"<div><div>Atomic force microscope (AFM) is an important nano-scale surface characterization and measurement method. Raster scanning method (RSM), widely used in AFMs, faces limitations on scanning speed and imaging accuracy. In this paper, an isotropic linear scanning method (ILSM) is proposed to improve the AFM imaging performance. Inspired by Chinese knot, ILSM is constructed by integrating two iterative triangular scanning trajectories in X and Y axes, similar to triangular Lissajous. Compared with the other scanning methods, ILSM features isotropic scanning trajectory across the scanning region. It is also easy to increase either the scanning speed or scanning resolution using ILSM. Subsequently, to address the hysteresis associated with the piezoelectric actuator, a new tracking algorithm is proposed by combining adaptive Kalman filtering and direct inverse modeling approach. Finally, AFM imaging experiments are conducted to validate the effectiveness of the proposed method. It can be found that the artifacts in RSM can be efficiently eliminated using the proposed method, thus improving the imaging quality.</div></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"268 ","pages":"Article 114081"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultramicroscopy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304399124001608","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

Atomic force microscope (AFM) is an important nano-scale surface characterization and measurement method. Raster scanning method (RSM), widely used in AFMs, faces limitations on scanning speed and imaging accuracy. In this paper, an isotropic linear scanning method (ILSM) is proposed to improve the AFM imaging performance. Inspired by Chinese knot, ILSM is constructed by integrating two iterative triangular scanning trajectories in X and Y axes, similar to triangular Lissajous. Compared with the other scanning methods, ILSM features isotropic scanning trajectory across the scanning region. It is also easy to increase either the scanning speed or scanning resolution using ILSM. Subsequently, to address the hysteresis associated with the piezoelectric actuator, a new tracking algorithm is proposed by combining adaptive Kalman filtering and direct inverse modeling approach. Finally, AFM imaging experiments are conducted to validate the effectiveness of the proposed method. It can be found that the artifacts in RSM can be efficiently eliminated using the proposed method, thus improving the imaging quality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
受中国结启发的各向同性线性扫描方法可提高原子力显微镜的成像性能
原子力显微镜(AFM)是一种重要的纳米级表面表征和测量方法。在原子力显微镜中广泛使用的光栅扫描法(RSM)在扫描速度和成像精度方面存在局限性。本文提出了一种各向同性线性扫描方法(ILSM),以提高原子力显微镜的成像性能。受中国结的启发,ILSM 是通过在 X 轴和 Y 轴上整合两个迭代三角形扫描轨迹来构建的,类似于三角形 Lissajous。与其他扫描方法相比,ILSM 扫描轨迹在扫描区域内各向同性。此外,使用 ILSM 还能轻松提高扫描速度或扫描分辨率。随后,为了解决与压电致动器相关的滞后问题,结合自适应卡尔曼滤波和直接逆建模方法,提出了一种新的跟踪算法。最后,进行了原子力显微镜成像实验,以验证所提方法的有效性。实验结果表明,使用所提出的方法可以有效消除 RSM 中的伪影,从而提高成像质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ultramicroscopy
Ultramicroscopy 工程技术-显微镜技术
CiteScore
4.60
自引率
13.60%
发文量
117
审稿时长
5.3 months
期刊介绍: Ultramicroscopy is an established journal that provides a forum for the publication of original research papers, invited reviews and rapid communications. The scope of Ultramicroscopy is to describe advances in instrumentation, methods and theory related to all modes of microscopical imaging, diffraction and spectroscopy in the life and physical sciences.
期刊最新文献
Aberration calculation of microlens array using differential algebraic method. Relativistic EELS scattering cross-sections for microanalysis based on Dirac solutions. Improved precision and accuracy of electron energy-loss spectroscopy quantification via fine structure fitting with constrained optimization. Workflow automation of SEM acquisitions and feature tracking. Enhancing subsurface imaging in ultrasonic atomic force microscopy with optimized contact force.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1