用于全球海洋数据同化的部分卷积生成对抗网络

IF 18.8 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Nature Machine Intelligence Pub Date : 2024-07-22 DOI:10.1038/s42256-024-00867-x
Yoo-Geun Ham, Yong-Sik Joo, Jeong-Hwan Kim, Jeong-Gil Lee
{"title":"用于全球海洋数据同化的部分卷积生成对抗网络","authors":"Yoo-Geun Ham, Yong-Sik Joo, Jeong-Hwan Kim, Jeong-Gil Lee","doi":"10.1038/s42256-024-00867-x","DOIUrl":null,"url":null,"abstract":"The oceanic data assimilation (DA) system has been developed to optimally combine numerical-model predictions with actual measurements from the ocean to create the best estimates of current ocean conditions and their uncertainties, improving our ability to forecast and understand the global climate variations. We developed DeepDA, a global oceanic DA system using deep learning, by integrating a partial convolutional neural network and a generative adversarial network. Partial convolution serves as an observation operator, mapping irregular observational data onto gridded fields, while generative adversarial network incorporates observational information from previous time frames. Our observing system simulation experiments, using simulated observations for the DA, revealed that DeepDA markedly reduces analysis error of the oceanic temperature, outperforming both background and observed values. DeepDA’s real-case global temperature reanalysis spanning from 1981 to 2020 accurately reconstructs observed global climatological temperature fields, along with their seasonal cycles, major oceanic temperature variabilities and global warming trend. Developed solely with a long-term control simulation, DeepDA lowers technical hurdles in creating global ocean reanalysis datasets using multiple numerical models’ physical constraints, thereby diminishing systematic uncertainties in estimating global oceanic states over decades with these models. Data assimilation (DA) techniques are commonly used to assess global Earth system variability but require considerable computational resources and struggle to handle sparse observational data. Ham and colleagues introduce a partial convolution and generative adversarial network-based global oceanic DA system and successfully reconstruct the observed global temperature in a real case study with smaller computational costs than traditional DA systems.","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"6 7","pages":"834-843"},"PeriodicalIF":18.8000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partial-convolution-implemented generative adversarial network for global oceanic data assimilation\",\"authors\":\"Yoo-Geun Ham, Yong-Sik Joo, Jeong-Hwan Kim, Jeong-Gil Lee\",\"doi\":\"10.1038/s42256-024-00867-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The oceanic data assimilation (DA) system has been developed to optimally combine numerical-model predictions with actual measurements from the ocean to create the best estimates of current ocean conditions and their uncertainties, improving our ability to forecast and understand the global climate variations. We developed DeepDA, a global oceanic DA system using deep learning, by integrating a partial convolutional neural network and a generative adversarial network. Partial convolution serves as an observation operator, mapping irregular observational data onto gridded fields, while generative adversarial network incorporates observational information from previous time frames. Our observing system simulation experiments, using simulated observations for the DA, revealed that DeepDA markedly reduces analysis error of the oceanic temperature, outperforming both background and observed values. DeepDA’s real-case global temperature reanalysis spanning from 1981 to 2020 accurately reconstructs observed global climatological temperature fields, along with their seasonal cycles, major oceanic temperature variabilities and global warming trend. Developed solely with a long-term control simulation, DeepDA lowers technical hurdles in creating global ocean reanalysis datasets using multiple numerical models’ physical constraints, thereby diminishing systematic uncertainties in estimating global oceanic states over decades with these models. Data assimilation (DA) techniques are commonly used to assess global Earth system variability but require considerable computational resources and struggle to handle sparse observational data. Ham and colleagues introduce a partial convolution and generative adversarial network-based global oceanic DA system and successfully reconstruct the observed global temperature in a real case study with smaller computational costs than traditional DA systems.\",\"PeriodicalId\":48533,\"journal\":{\"name\":\"Nature Machine Intelligence\",\"volume\":\"6 7\",\"pages\":\"834-843\"},\"PeriodicalIF\":18.8000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Machine Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.nature.com/articles/s42256-024-00867-x\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.nature.com/articles/s42256-024-00867-x","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

开发海洋数据同化(DA)系统的目的是将数值模式预测与海洋实际测量结果进行优化组合,从而对当前海洋状况及其不确定性做出最佳估计,从而提高我们预测和了解全球气候变异的能力。我们通过整合部分卷积神经网络和生成对抗网络,开发了使用深度学习的全球海洋数据分析系统 DeepDA。部分卷积作为观测算子,将不规则的观测数据映射到网格场上,而生成对抗网络则结合了之前时间段的观测信息。我们利用模拟观测数据进行了观测系统模拟实验,结果表明,DeepDA 显著降低了海洋温度的分析误差,优于背景值和观测值。DeepDA的实况全球温度再分析从1981年一直持续到2020年,准确地重建了观测到的全球气候学温度场及其季节周期、主要海洋温度变率和全球变暖趋势。DeepDA 完全是通过长期控制模拟开发的,它降低了利用多种数值模式物理约束条件创建全球海洋再分析数据集的技术障碍,从而减少了利用这些模式估计几十年全球海洋状态的系统不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Partial-convolution-implemented generative adversarial network for global oceanic data assimilation
The oceanic data assimilation (DA) system has been developed to optimally combine numerical-model predictions with actual measurements from the ocean to create the best estimates of current ocean conditions and their uncertainties, improving our ability to forecast and understand the global climate variations. We developed DeepDA, a global oceanic DA system using deep learning, by integrating a partial convolutional neural network and a generative adversarial network. Partial convolution serves as an observation operator, mapping irregular observational data onto gridded fields, while generative adversarial network incorporates observational information from previous time frames. Our observing system simulation experiments, using simulated observations for the DA, revealed that DeepDA markedly reduces analysis error of the oceanic temperature, outperforming both background and observed values. DeepDA’s real-case global temperature reanalysis spanning from 1981 to 2020 accurately reconstructs observed global climatological temperature fields, along with their seasonal cycles, major oceanic temperature variabilities and global warming trend. Developed solely with a long-term control simulation, DeepDA lowers technical hurdles in creating global ocean reanalysis datasets using multiple numerical models’ physical constraints, thereby diminishing systematic uncertainties in estimating global oceanic states over decades with these models. Data assimilation (DA) techniques are commonly used to assess global Earth system variability but require considerable computational resources and struggle to handle sparse observational data. Ham and colleagues introduce a partial convolution and generative adversarial network-based global oceanic DA system and successfully reconstruct the observed global temperature in a real case study with smaller computational costs than traditional DA systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
36.90
自引率
2.10%
发文量
127
期刊介绍: Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements. To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects. Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.
期刊最新文献
Reshaping the discovery of self-assembling peptides with generative AI guided by hybrid deep learning A soft skin with self-decoupled three-axis force-sensing taxels Efficient rare event sampling with unsupervised normalizing flows Clinical large language models with misplaced focus Efficient generation of protein pockets with PocketGen
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1