{"title":"超晶粒尺度的磁失衡:日冕洞形成的驱动机制","authors":"M. Cantoresi, F. Berrilli","doi":"10.1007/s11207-024-02342-7","DOIUrl":null,"url":null,"abstract":"<div><p>Unraveling the intricate interplay between the solar photosphere’s magnetic field and the dynamics of the upper solar atmosphere is paramount to understanding the organization of solar magnetic fields and their influence on space weather events. This study delves into the organization of photospheric magnetic fields particularly in the context of coronal holes (CHs), as they are believed to harbor the sources of fast solar wind. We employed the signed measure technique on synthetic images that depict various arrangements of magnetic fields, encompassing imbalances in the sign of the magnetic field (inward and outward) and spatial organization.</p><p>This study provides compelling evidence that the cancellation functions of simulated regions with imbalanced magnetic fields along the boundaries of supergranular cells align with cancellation function trends of observed photospheric magnetic regions associated with CHs. Thus the analysis serves as a significant proof that CHs arise from the formation of imbalanced magnetic patterns on the edges of supergranular cells.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"299 7","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11207-024-02342-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Magnetic Imbalance at Supergranular Scale: A Driving Mechanism for Coronal Hole Formation\",\"authors\":\"M. Cantoresi, F. Berrilli\",\"doi\":\"10.1007/s11207-024-02342-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Unraveling the intricate interplay between the solar photosphere’s magnetic field and the dynamics of the upper solar atmosphere is paramount to understanding the organization of solar magnetic fields and their influence on space weather events. This study delves into the organization of photospheric magnetic fields particularly in the context of coronal holes (CHs), as they are believed to harbor the sources of fast solar wind. We employed the signed measure technique on synthetic images that depict various arrangements of magnetic fields, encompassing imbalances in the sign of the magnetic field (inward and outward) and spatial organization.</p><p>This study provides compelling evidence that the cancellation functions of simulated regions with imbalanced magnetic fields along the boundaries of supergranular cells align with cancellation function trends of observed photospheric magnetic regions associated with CHs. Thus the analysis serves as a significant proof that CHs arise from the formation of imbalanced magnetic patterns on the edges of supergranular cells.</p></div>\",\"PeriodicalId\":777,\"journal\":{\"name\":\"Solar Physics\",\"volume\":\"299 7\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11207-024-02342-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11207-024-02342-7\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11207-024-02342-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Magnetic Imbalance at Supergranular Scale: A Driving Mechanism for Coronal Hole Formation
Unraveling the intricate interplay between the solar photosphere’s magnetic field and the dynamics of the upper solar atmosphere is paramount to understanding the organization of solar magnetic fields and their influence on space weather events. This study delves into the organization of photospheric magnetic fields particularly in the context of coronal holes (CHs), as they are believed to harbor the sources of fast solar wind. We employed the signed measure technique on synthetic images that depict various arrangements of magnetic fields, encompassing imbalances in the sign of the magnetic field (inward and outward) and spatial organization.
This study provides compelling evidence that the cancellation functions of simulated regions with imbalanced magnetic fields along the boundaries of supergranular cells align with cancellation function trends of observed photospheric magnetic regions associated with CHs. Thus the analysis serves as a significant proof that CHs arise from the formation of imbalanced magnetic patterns on the edges of supergranular cells.
期刊介绍:
Solar Physics was founded in 1967 and is the principal journal for the publication of the results of fundamental research on the Sun. The journal treats all aspects of solar physics, ranging from the internal structure of the Sun and its evolution to the outer corona and solar wind in interplanetary space. Papers on solar-terrestrial physics and on stellar research are also published when their results have a direct bearing on our understanding of the Sun.