Prediction of Geoeffective CMEs Using SOHO Images and Deep Learning

IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Solar Physics Pub Date : 2024-11-20 DOI:10.1007/s11207-024-02385-w
Khalid A. Alobaid, Jason T. L. Wang, Haimin Wang, Ju Jing, Yasser Abduallah, Zhenduo Wang, Hameedullah Farooki, Huseyin Cavus, Vasyl Yurchyshyn
{"title":"Prediction of Geoeffective CMEs Using SOHO Images and Deep Learning","authors":"Khalid A. Alobaid,&nbsp;Jason T. L. Wang,&nbsp;Haimin Wang,&nbsp;Ju Jing,&nbsp;Yasser Abduallah,&nbsp;Zhenduo Wang,&nbsp;Hameedullah Farooki,&nbsp;Huseyin Cavus,&nbsp;Vasyl Yurchyshyn","doi":"10.1007/s11207-024-02385-w","DOIUrl":null,"url":null,"abstract":"<div><p>The application of machine learning to the study of coronal mass ejections (CMEs) and their impacts on Earth has seen significant growth recently. Understanding and forecasting CME geoeffectiveness are crucial for protecting infrastructure in space and ensuring the resilience of technological systems on Earth. Here we present GeoCME, a deep-learning framework designed to predict, deterministically or probabilistically, whether a CME event that arrives at Earth will cause a geomagnetic storm. A geomagnetic storm is defined as a disturbance of the Earth’s magnetosphere during which the minimum Dst index value is less than −50 nT. GeoCME is trained on observations from the instruments including LASCO C2, EIT, and MDI on board the Solar and Heliospheric Observatory (SOHO), focusing on a dataset that includes 136 halo/partial halo CMEs in Solar Cycle 23. Using ensemble and transfer learning techniques, GeoCME is capable of extracting features hidden in the SOHO observations and making predictions based on the learned features. Our experimental results demonstrate the good performance of GeoCME, achieving a Matthew’s correlation coefficient of 0.807 and a true skill statistics score of 0.714 when the tool is used as a deterministic prediction model. When the tool is used as a probabilistic forecasting model, it achieves a Brier score of 0.094 and a Brier skill score of 0.493. These results are promising, showing that the proposed GeoCME can help enhance our understanding of CME-triggered solar-terrestrial interactions.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"299 11","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11207-024-02385-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11207-024-02385-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The application of machine learning to the study of coronal mass ejections (CMEs) and their impacts on Earth has seen significant growth recently. Understanding and forecasting CME geoeffectiveness are crucial for protecting infrastructure in space and ensuring the resilience of technological systems on Earth. Here we present GeoCME, a deep-learning framework designed to predict, deterministically or probabilistically, whether a CME event that arrives at Earth will cause a geomagnetic storm. A geomagnetic storm is defined as a disturbance of the Earth’s magnetosphere during which the minimum Dst index value is less than −50 nT. GeoCME is trained on observations from the instruments including LASCO C2, EIT, and MDI on board the Solar and Heliospheric Observatory (SOHO), focusing on a dataset that includes 136 halo/partial halo CMEs in Solar Cycle 23. Using ensemble and transfer learning techniques, GeoCME is capable of extracting features hidden in the SOHO observations and making predictions based on the learned features. Our experimental results demonstrate the good performance of GeoCME, achieving a Matthew’s correlation coefficient of 0.807 and a true skill statistics score of 0.714 when the tool is used as a deterministic prediction model. When the tool is used as a probabilistic forecasting model, it achieves a Brier score of 0.094 and a Brier skill score of 0.493. These results are promising, showing that the proposed GeoCME can help enhance our understanding of CME-triggered solar-terrestrial interactions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 SOHO 图像和深度学习预测地球效应 CMEs
最近,机器学习在日冕物质抛射(CME)及其对地球影响研究中的应用有了显著增长。了解和预测日冕物质抛射的地球效应对于保护太空基础设施和确保地球技术系统的复原力至关重要。我们在此介绍 GeoCME,这是一个深度学习框架,旨在以确定性或概率性的方式预测到达地球的 CME 事件是否会引发地磁暴。地磁暴被定义为地球磁层的扰动,其间最小 Dst 指数值小于 -50 nT。GeoCME 根据太阳和日光层天文台(SOHO)上的 LASCO C2、EIT 和 MDI 等仪器的观测数据进行训练,重点是太阳周期 23 中的 136 个半晕/半晕 CME 数据集。利用集合学习和迁移学习技术,GeoCME 能够提取隐藏在 SOHO 观测数据中的特征,并根据所学特征进行预测。我们的实验结果证明了 GeoCME 的良好性能,当该工具用作确定性预测模型时,马修相关系数达到 0.807,真实技能统计得分达到 0.714。当该工具用作概率预测模型时,其布赖尔得分为 0.094,布赖尔技能得分为 0.493。这些结果很有希望,表明拟议的 GeoCME 有助于加深我们对由 CME 触发的日地相互作用的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar Physics
Solar Physics 地学天文-天文与天体物理
CiteScore
5.10
自引率
17.90%
发文量
146
审稿时长
1 months
期刊介绍: Solar Physics was founded in 1967 and is the principal journal for the publication of the results of fundamental research on the Sun. The journal treats all aspects of solar physics, ranging from the internal structure of the Sun and its evolution to the outer corona and solar wind in interplanetary space. Papers on solar-terrestrial physics and on stellar research are also published when their results have a direct bearing on our understanding of the Sun.
期刊最新文献
Prediction of Geoeffective CMEs Using SOHO Images and Deep Learning A New Solar Hard X-ray Image Reconstruction Algorithm for ASO-S/HXI Based on Deep Learning Calibration and Performance of the Full-Disk Vector MagnetoGraph (FMG) on Board the Advanced Space-Based Solar Observatory (ASO-S) Evaluation of Sunspot Areas Derived by Automated Sunspot-Detection Methods Helioseismic Constraints: Past, Current, and Future Observations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1