Fahad I. Danladi, Abhishek Rawat, Abhishek Kumar Adak, Chuzhong Zhang, Vinod K. Sangwan, Riddhi Ananth, Mark C. Hersam, Efstathios I. Meletis and Krishnan Rajeshwar
{"title":"通过碱土金属置换合成和调节偏钒酸铜合金的电子、光学和光电化学性质","authors":"Fahad I. Danladi, Abhishek Rawat, Abhishek Kumar Adak, Chuzhong Zhang, Vinod K. Sangwan, Riddhi Ananth, Mark C. Hersam, Efstathios I. Meletis and Krishnan Rajeshwar","doi":"10.1149/2162-8777/ad5b88","DOIUrl":null,"url":null,"abstract":"Unlike the well-studied and technologically advanced Group III-V and Group II-VI compound semiconductor alloys, alloys of ternary metal oxide semiconductors have only recently begun to receive widespread attention. Here, we describe the effect of alkaline earth metal substitution on the optical, electronic, and photoelectrochemical (PEC) properties of copper metavanadate (CuV2O6). As a host, the Cu-V-O compound family presents a versatile framework to develop such composition-property correlations. Alloy compositions of A0.1Cu0.9V2O6 (A = Mg, Ca) photoanodes were synthesized via a time and energy-efficient solution combustion synthesis (SCS) method. The effect of introducing alkaline earth metals (Mg, Ca) on the crystal structure, microstructure, electronic, and optical properties of copper metavanadates was investigated by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (DRS), transmission electron microscopy (TEM), and Raman spectroscopy. The PXRD, TEM, and Raman spectroscopy data demonstrated the polycrystalline powder samples to be mutually soluble, solid solutions of copper and alkaline earth metal metavanadates and not simple mixtures of these compounds. The DRS data showed a systematic decrease in the optical bandgap with Cu incorporation. These trends were corroborated by electronic band structure calculations. Finally, the PEC properties exhibited a strong dependence on the alloy composition, pointing to possible applicability in solar water splitting, heterogeneous photocatalysis, phosphor lighting/displays, and photovoltaic devices.","PeriodicalId":11496,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":"18 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Tuning of Electronic, Optical, and Photoelectrochemical Properties of Copper Metavanadate Alloys via Alkaline Earth Metal Substitution\",\"authors\":\"Fahad I. Danladi, Abhishek Rawat, Abhishek Kumar Adak, Chuzhong Zhang, Vinod K. Sangwan, Riddhi Ananth, Mark C. Hersam, Efstathios I. Meletis and Krishnan Rajeshwar\",\"doi\":\"10.1149/2162-8777/ad5b88\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unlike the well-studied and technologically advanced Group III-V and Group II-VI compound semiconductor alloys, alloys of ternary metal oxide semiconductors have only recently begun to receive widespread attention. Here, we describe the effect of alkaline earth metal substitution on the optical, electronic, and photoelectrochemical (PEC) properties of copper metavanadate (CuV2O6). As a host, the Cu-V-O compound family presents a versatile framework to develop such composition-property correlations. Alloy compositions of A0.1Cu0.9V2O6 (A = Mg, Ca) photoanodes were synthesized via a time and energy-efficient solution combustion synthesis (SCS) method. The effect of introducing alkaline earth metals (Mg, Ca) on the crystal structure, microstructure, electronic, and optical properties of copper metavanadates was investigated by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (DRS), transmission electron microscopy (TEM), and Raman spectroscopy. The PXRD, TEM, and Raman spectroscopy data demonstrated the polycrystalline powder samples to be mutually soluble, solid solutions of copper and alkaline earth metal metavanadates and not simple mixtures of these compounds. The DRS data showed a systematic decrease in the optical bandgap with Cu incorporation. These trends were corroborated by electronic band structure calculations. Finally, the PEC properties exhibited a strong dependence on the alloy composition, pointing to possible applicability in solar water splitting, heterogeneous photocatalysis, phosphor lighting/displays, and photovoltaic devices.\",\"PeriodicalId\":11496,\"journal\":{\"name\":\"ECS Journal of Solid State Science and Technology\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Journal of Solid State Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1149/2162-8777/ad5b88\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Journal of Solid State Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1149/2162-8777/ad5b88","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis and Tuning of Electronic, Optical, and Photoelectrochemical Properties of Copper Metavanadate Alloys via Alkaline Earth Metal Substitution
Unlike the well-studied and technologically advanced Group III-V and Group II-VI compound semiconductor alloys, alloys of ternary metal oxide semiconductors have only recently begun to receive widespread attention. Here, we describe the effect of alkaline earth metal substitution on the optical, electronic, and photoelectrochemical (PEC) properties of copper metavanadate (CuV2O6). As a host, the Cu-V-O compound family presents a versatile framework to develop such composition-property correlations. Alloy compositions of A0.1Cu0.9V2O6 (A = Mg, Ca) photoanodes were synthesized via a time and energy-efficient solution combustion synthesis (SCS) method. The effect of introducing alkaline earth metals (Mg, Ca) on the crystal structure, microstructure, electronic, and optical properties of copper metavanadates was investigated by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (DRS), transmission electron microscopy (TEM), and Raman spectroscopy. The PXRD, TEM, and Raman spectroscopy data demonstrated the polycrystalline powder samples to be mutually soluble, solid solutions of copper and alkaline earth metal metavanadates and not simple mixtures of these compounds. The DRS data showed a systematic decrease in the optical bandgap with Cu incorporation. These trends were corroborated by electronic band structure calculations. Finally, the PEC properties exhibited a strong dependence on the alloy composition, pointing to possible applicability in solar water splitting, heterogeneous photocatalysis, phosphor lighting/displays, and photovoltaic devices.
期刊介绍:
The ECS Journal of Solid State Science and Technology (JSS) was launched in 2012, and publishes outstanding research covering fundamental and applied areas of solid state science and technology, including experimental and theoretical aspects of the chemistry and physics of materials and devices.
JSS has five topical interest areas:
carbon nanostructures and devices
dielectric science and materials
electronic materials and processing
electronic and photonic devices and systems
luminescence and display materials, devices and processing.