{"title":"利用逆向计数器掺杂曲线降低埋入式沟道 PMOSFET 的低频噪声","authors":"Shuntaro Fujii;Toshiro Sakamoto;Soichi Morita;Tsutomu Miyazaki","doi":"10.1109/JEDS.2024.3430308","DOIUrl":null,"url":null,"abstract":"The impacts of retrograde counter doping (RCD) profiles on low frequency noise (LFN) of buried channel (BC) PMOSFETs were investigated. RCD profiles were formed using heavy ion implantation. The RCD profile reduced LFN by more than 50%. The origin of LFN reduction in the RCD device was investigated using TCAD simulation. It was found that both RCD profile itself and the polarity of Si surface contributed to the deeper channel position and larger energy barrier between Si surface and channel position.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"12 ","pages":"534-540"},"PeriodicalIF":2.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10601688","citationCount":"0","resultStr":"{\"title\":\"Reduction of Low Frequency Noise of Buried Channel PMOSFETs With Retrograde Counter Doping Profiles\",\"authors\":\"Shuntaro Fujii;Toshiro Sakamoto;Soichi Morita;Tsutomu Miyazaki\",\"doi\":\"10.1109/JEDS.2024.3430308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The impacts of retrograde counter doping (RCD) profiles on low frequency noise (LFN) of buried channel (BC) PMOSFETs were investigated. RCD profiles were formed using heavy ion implantation. The RCD profile reduced LFN by more than 50%. The origin of LFN reduction in the RCD device was investigated using TCAD simulation. It was found that both RCD profile itself and the polarity of Si surface contributed to the deeper channel position and larger energy barrier between Si surface and channel position.\",\"PeriodicalId\":13210,\"journal\":{\"name\":\"IEEE Journal of the Electron Devices Society\",\"volume\":\"12 \",\"pages\":\"534-540\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10601688\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of the Electron Devices Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10601688/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10601688/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Reduction of Low Frequency Noise of Buried Channel PMOSFETs With Retrograde Counter Doping Profiles
The impacts of retrograde counter doping (RCD) profiles on low frequency noise (LFN) of buried channel (BC) PMOSFETs were investigated. RCD profiles were formed using heavy ion implantation. The RCD profile reduced LFN by more than 50%. The origin of LFN reduction in the RCD device was investigated using TCAD simulation. It was found that both RCD profile itself and the polarity of Si surface contributed to the deeper channel position and larger energy barrier between Si surface and channel position.
期刊介绍:
The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.