利用逆向计数器掺杂曲线降低埋入式沟道 PMOSFET 的低频噪声

IF 2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal of the Electron Devices Society Pub Date : 2024-07-18 DOI:10.1109/JEDS.2024.3430308
Shuntaro Fujii;Toshiro Sakamoto;Soichi Morita;Tsutomu Miyazaki
{"title":"利用逆向计数器掺杂曲线降低埋入式沟道 PMOSFET 的低频噪声","authors":"Shuntaro Fujii;Toshiro Sakamoto;Soichi Morita;Tsutomu Miyazaki","doi":"10.1109/JEDS.2024.3430308","DOIUrl":null,"url":null,"abstract":"The impacts of retrograde counter doping (RCD) profiles on low frequency noise (LFN) of buried channel (BC) PMOSFETs were investigated. RCD profiles were formed using heavy ion implantation. The RCD profile reduced LFN by more than 50%. The origin of LFN reduction in the RCD device was investigated using TCAD simulation. It was found that both RCD profile itself and the polarity of Si surface contributed to the deeper channel position and larger energy barrier between Si surface and channel position.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"12 ","pages":"534-540"},"PeriodicalIF":2.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10601688","citationCount":"0","resultStr":"{\"title\":\"Reduction of Low Frequency Noise of Buried Channel PMOSFETs With Retrograde Counter Doping Profiles\",\"authors\":\"Shuntaro Fujii;Toshiro Sakamoto;Soichi Morita;Tsutomu Miyazaki\",\"doi\":\"10.1109/JEDS.2024.3430308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The impacts of retrograde counter doping (RCD) profiles on low frequency noise (LFN) of buried channel (BC) PMOSFETs were investigated. RCD profiles were formed using heavy ion implantation. The RCD profile reduced LFN by more than 50%. The origin of LFN reduction in the RCD device was investigated using TCAD simulation. It was found that both RCD profile itself and the polarity of Si surface contributed to the deeper channel position and larger energy barrier between Si surface and channel position.\",\"PeriodicalId\":13210,\"journal\":{\"name\":\"IEEE Journal of the Electron Devices Society\",\"volume\":\"12 \",\"pages\":\"534-540\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10601688\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of the Electron Devices Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10601688/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10601688/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

研究了逆向反掺杂(RCD)剖面对埋沟道(BC)PMOSFET 低频噪声(LFN)的影响。RCD 曲线是通过重离子植入形成的。RCD 剖面将 LFN 降低了 50% 以上。使用 TCAD 仿真研究了 RCD 器件中 LFN 减少的原因。结果发现,RCD 曲线本身和硅表面的极性都导致沟道位置变深以及硅表面和沟道位置之间的能障变大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reduction of Low Frequency Noise of Buried Channel PMOSFETs With Retrograde Counter Doping Profiles
The impacts of retrograde counter doping (RCD) profiles on low frequency noise (LFN) of buried channel (BC) PMOSFETs were investigated. RCD profiles were formed using heavy ion implantation. The RCD profile reduced LFN by more than 50%. The origin of LFN reduction in the RCD device was investigated using TCAD simulation. It was found that both RCD profile itself and the polarity of Si surface contributed to the deeper channel position and larger energy barrier between Si surface and channel position.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of the Electron Devices Society
IEEE Journal of the Electron Devices Society Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
5.20
自引率
4.30%
发文量
124
审稿时长
9 weeks
期刊介绍: The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.
期刊最新文献
Corrections to “Emergence of Negative Differential Resistance Through Hole Resonant Tunneling in GeSn/GeSiSn Double Barrier Structure” Self-Aligned Staggered Amorphous-Indium-Gallium-Zinc-Oxide Thin-Film Transistors With Ultra-Low Contact Resistance for High-Speed Circuits Application A Highly Robust Integrated Gate Driver Based on Organic TFTs for Active-Matrix Displays Generic Cryogenic CMOS Device Modeling and EDA-Compatible Platform for Reliable Cryogenic IC Design A 3-kV GaN MISHEMT With High Reliability and a Power Figure-of-Merit of 685 MW/cm²
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1