{"title":"高保真数字双胞胎:检测和定位结构弱点","authors":"Rainald Löhner, Facundo Airaudo, Harbir Antil, Roland Wüchner, Fabian Meister, Suneth Warnakulasuriya","doi":"10.1002/nme.7568","DOIUrl":null,"url":null,"abstract":"<p>An adjoint-based procedure to determine weaknesses, or, more generally, the material properties of structures is developed and tested. Given a series of load cases and corresponding displacement/strain measurements, the material properties are obtained by minimizing the weighted differences between the measured and computed values. The present paper proposes and tests techniques to minimize the number of load cases and sensors. Several examples show the viability, accuracy and efficiency of the proposed methodology and its potential use for high fidelity digital twins.</p>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nme.7568","citationCount":"0","resultStr":"{\"title\":\"High-fidelity digital twins: Detecting and localizing weaknesses in structures\",\"authors\":\"Rainald Löhner, Facundo Airaudo, Harbir Antil, Roland Wüchner, Fabian Meister, Suneth Warnakulasuriya\",\"doi\":\"10.1002/nme.7568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An adjoint-based procedure to determine weaknesses, or, more generally, the material properties of structures is developed and tested. Given a series of load cases and corresponding displacement/strain measurements, the material properties are obtained by minimizing the weighted differences between the measured and computed values. The present paper proposes and tests techniques to minimize the number of load cases and sensors. Several examples show the viability, accuracy and efficiency of the proposed methodology and its potential use for high fidelity digital twins.</p>\",\"PeriodicalId\":13699,\"journal\":{\"name\":\"International Journal for Numerical Methods in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nme.7568\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/nme.7568\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.7568","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
High-fidelity digital twins: Detecting and localizing weaknesses in structures
An adjoint-based procedure to determine weaknesses, or, more generally, the material properties of structures is developed and tested. Given a series of load cases and corresponding displacement/strain measurements, the material properties are obtained by minimizing the weighted differences between the measured and computed values. The present paper proposes and tests techniques to minimize the number of load cases and sensors. Several examples show the viability, accuracy and efficiency of the proposed methodology and its potential use for high fidelity digital twins.
期刊介绍:
The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems.
The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.