Akira Nagaoka, Hiroshi Yakuwa, Ryotaro Yamamoto and Kenji Amaya
{"title":"不同外部电位和初始缝隙条件下不锈钢缝隙腐蚀引发行为的数值分析","authors":"Akira Nagaoka, Hiroshi Yakuwa, Ryotaro Yamamoto and Kenji Amaya","doi":"10.1149/1945-7111/ad5cc5","DOIUrl":null,"url":null,"abstract":"The potential, current density, pH, and crevice profile distribution within the crevice structure of stainless steel in seawater were numerically analyzed. The crevice corrosion phenomena were mathematically modeled with the initial boundary value problem of diffusion and static electrical field, respectively. This initial boundary value problem was discretized using a finite difference method. The predicts of the crevice corrosion behaviors, set for various external potentials and initial crevice gaps, were classified into three categories: the pitting type, the active type, and no corrosion. The pitting type crevice corrosion was predicted to occur in conditions where the external potentials were noble and the initial crevice gaps were narrow. The active type crevice corrosion was predicted to occur in conditions where the external potentials were less noble and the initial crevice gaps were narrow. The range of external potential conditions where crevice corrosion was predicted not to occur increased in conditions with wide initial crevice gaps. Crevice corrosion was predicted to occur at all external potentials in conditions where the initial crevice gaps were 2 μm or less.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"45 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Analysis of Stainless Steel of Crevice Corrosion Initiation Behavior with Varying External Potentials and Initial Crevice Gaps\",\"authors\":\"Akira Nagaoka, Hiroshi Yakuwa, Ryotaro Yamamoto and Kenji Amaya\",\"doi\":\"10.1149/1945-7111/ad5cc5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The potential, current density, pH, and crevice profile distribution within the crevice structure of stainless steel in seawater were numerically analyzed. The crevice corrosion phenomena were mathematically modeled with the initial boundary value problem of diffusion and static electrical field, respectively. This initial boundary value problem was discretized using a finite difference method. The predicts of the crevice corrosion behaviors, set for various external potentials and initial crevice gaps, were classified into three categories: the pitting type, the active type, and no corrosion. The pitting type crevice corrosion was predicted to occur in conditions where the external potentials were noble and the initial crevice gaps were narrow. The active type crevice corrosion was predicted to occur in conditions where the external potentials were less noble and the initial crevice gaps were narrow. The range of external potential conditions where crevice corrosion was predicted not to occur increased in conditions with wide initial crevice gaps. Crevice corrosion was predicted to occur at all external potentials in conditions where the initial crevice gaps were 2 μm or less.\",\"PeriodicalId\":17364,\"journal\":{\"name\":\"Journal of The Electrochemical Society\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Electrochemical Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1149/1945-7111/ad5cc5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad5cc5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Numerical Analysis of Stainless Steel of Crevice Corrosion Initiation Behavior with Varying External Potentials and Initial Crevice Gaps
The potential, current density, pH, and crevice profile distribution within the crevice structure of stainless steel in seawater were numerically analyzed. The crevice corrosion phenomena were mathematically modeled with the initial boundary value problem of diffusion and static electrical field, respectively. This initial boundary value problem was discretized using a finite difference method. The predicts of the crevice corrosion behaviors, set for various external potentials and initial crevice gaps, were classified into three categories: the pitting type, the active type, and no corrosion. The pitting type crevice corrosion was predicted to occur in conditions where the external potentials were noble and the initial crevice gaps were narrow. The active type crevice corrosion was predicted to occur in conditions where the external potentials were less noble and the initial crevice gaps were narrow. The range of external potential conditions where crevice corrosion was predicted not to occur increased in conditions with wide initial crevice gaps. Crevice corrosion was predicted to occur at all external potentials in conditions where the initial crevice gaps were 2 μm or less.
期刊介绍:
The Journal of The Electrochemical Society (JES) is the leader in the field of solid-state and electrochemical science and technology. This peer-reviewed journal publishes an average of 450 pages of 70 articles each month. Articles are posted online, with a monthly paper edition following electronic publication. The ECS membership benefits package includes access to the electronic edition of this journal.