{"title":"结合 DEA 和 MCDM 两种方法,提供具有模糊数据的银行网点排名算法","authors":"Rouhollah Kiani-Ghalehno, Ali Mahmoodirad","doi":"10.1007/s12652-024-04833-8","DOIUrl":null,"url":null,"abstract":"<p>Financial and credit institutions need to evaluate and rank their subsidiaries to control and improve their performances. There are several methods to evaluate the performance of such branches. In order to take advantage of the strengths of each of these methods and cover some of the limitations that exist in each of these methods alone, in this study, an algorithm which is a combination of multi-criteria decision-making methods, statistical analysis, and data envelopment analysis is proposed. The location of each of the methods mentioned in the steps of the algorithm, and its simulation to a standard linear programming model in MATLAB software, is the main research problem that is designed and presented for fuzzy type uncertain data. The proposed algorithm was used for 1736 branches of a certain bank in banking sector of Iran with uncertain data. Analysis of the results for different alpha-cuts and testing them with SPSS software show that with increasing the range of fuzzy numbers, the number of efficient branches increases and also affect the ranking. Nevertheless, there is still a significant correlation even in the alpha-cut changes in the ranking results.</p>","PeriodicalId":14959,"journal":{"name":"Journal of Ambient Intelligence and Humanized Computing","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Providing bank branch ranking algorithm with fuzzy data, using a combination of two methods DEA and MCDM\",\"authors\":\"Rouhollah Kiani-Ghalehno, Ali Mahmoodirad\",\"doi\":\"10.1007/s12652-024-04833-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Financial and credit institutions need to evaluate and rank their subsidiaries to control and improve their performances. There are several methods to evaluate the performance of such branches. In order to take advantage of the strengths of each of these methods and cover some of the limitations that exist in each of these methods alone, in this study, an algorithm which is a combination of multi-criteria decision-making methods, statistical analysis, and data envelopment analysis is proposed. The location of each of the methods mentioned in the steps of the algorithm, and its simulation to a standard linear programming model in MATLAB software, is the main research problem that is designed and presented for fuzzy type uncertain data. The proposed algorithm was used for 1736 branches of a certain bank in banking sector of Iran with uncertain data. Analysis of the results for different alpha-cuts and testing them with SPSS software show that with increasing the range of fuzzy numbers, the number of efficient branches increases and also affect the ranking. Nevertheless, there is still a significant correlation even in the alpha-cut changes in the ranking results.</p>\",\"PeriodicalId\":14959,\"journal\":{\"name\":\"Journal of Ambient Intelligence and Humanized Computing\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ambient Intelligence and Humanized Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12652-024-04833-8\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Humanized Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12652-024-04833-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Providing bank branch ranking algorithm with fuzzy data, using a combination of two methods DEA and MCDM
Financial and credit institutions need to evaluate and rank their subsidiaries to control and improve their performances. There are several methods to evaluate the performance of such branches. In order to take advantage of the strengths of each of these methods and cover some of the limitations that exist in each of these methods alone, in this study, an algorithm which is a combination of multi-criteria decision-making methods, statistical analysis, and data envelopment analysis is proposed. The location of each of the methods mentioned in the steps of the algorithm, and its simulation to a standard linear programming model in MATLAB software, is the main research problem that is designed and presented for fuzzy type uncertain data. The proposed algorithm was used for 1736 branches of a certain bank in banking sector of Iran with uncertain data. Analysis of the results for different alpha-cuts and testing them with SPSS software show that with increasing the range of fuzzy numbers, the number of efficient branches increases and also affect the ranking. Nevertheless, there is still a significant correlation even in the alpha-cut changes in the ranking results.
期刊介绍:
The purpose of JAIHC is to provide a high profile, leading edge forum for academics, industrial professionals, educators and policy makers involved in the field to contribute, to disseminate the most innovative researches and developments of all aspects of ambient intelligence and humanized computing, such as intelligent/smart objects, environments/spaces, and systems. The journal discusses various technical, safety, personal, social, physical, political, artistic and economic issues. The research topics covered by the journal are (but not limited to):
Pervasive/Ubiquitous Computing and Applications
Cognitive wireless sensor network
Embedded Systems and Software
Mobile Computing and Wireless Communications
Next Generation Multimedia Systems
Security, Privacy and Trust
Service and Semantic Computing
Advanced Networking Architectures
Dependable, Reliable and Autonomic Computing
Embedded Smart Agents
Context awareness, social sensing and inference
Multi modal interaction design
Ergonomics and product prototyping
Intelligent and self-organizing transportation networks & services
Healthcare Systems
Virtual Humans & Virtual Worlds
Wearables sensors and actuators