{"title":"超声波毛细管微反应器中粘性液体间的强化乳化过程:机理分析及在纳米乳液制备中的应用","authors":"Sawita Tanwinit, Shuainan Zhao, Chaoqun Yao, Guangwen Chen","doi":"10.1007/s41981-024-00331-2","DOIUrl":null,"url":null,"abstract":"<div><p>Experimental investigations into acoustic cavitation and ultrasound-assited emulsification process between highly viscous liquids were systematically conducted in a laboratory-built ultrasonic microreactor. Under ultrasound irradiation, four cavitation modes were observed simultaneously in soybean oil, including volume, shape, transient collapse and cavitation clouds. Influenced by the intense oscillation of cavitation bubbles, emulsification between viscous liquids was initiated through a dispersion and migration mode. The effects of varying parameters, such as input power, residence time, channel size, HLB value, surfactant concentration and volume ratio between aqueous and oil phase, on the size and polydispersity of prepared emulsion were investigated using water-soybean oil two-phase system as a model. The emulsion size was reduced to 75.60 nm through optimization of experimental parameters. Based on these findings, the ultrasonic microreactor was successfully employed in the preparation of Vitamin E-enriched nano-emulsions. A fine emulsion with low average size (47.69 nm) and good storage stability (60 days) was prepared within 2 min, further indicating the potential application of ultrasonic microreactor in the beverage and pharmaceutical industries.</p></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 3","pages":"569 - 584"},"PeriodicalIF":2.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced emulsification process between viscous liquids in an ultrasonic capillary microreactor: mechanism analysis and application in nano-emulsion preparation\",\"authors\":\"Sawita Tanwinit, Shuainan Zhao, Chaoqun Yao, Guangwen Chen\",\"doi\":\"10.1007/s41981-024-00331-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Experimental investigations into acoustic cavitation and ultrasound-assited emulsification process between highly viscous liquids were systematically conducted in a laboratory-built ultrasonic microreactor. Under ultrasound irradiation, four cavitation modes were observed simultaneously in soybean oil, including volume, shape, transient collapse and cavitation clouds. Influenced by the intense oscillation of cavitation bubbles, emulsification between viscous liquids was initiated through a dispersion and migration mode. The effects of varying parameters, such as input power, residence time, channel size, HLB value, surfactant concentration and volume ratio between aqueous and oil phase, on the size and polydispersity of prepared emulsion were investigated using water-soybean oil two-phase system as a model. The emulsion size was reduced to 75.60 nm through optimization of experimental parameters. Based on these findings, the ultrasonic microreactor was successfully employed in the preparation of Vitamin E-enriched nano-emulsions. A fine emulsion with low average size (47.69 nm) and good storage stability (60 days) was prepared within 2 min, further indicating the potential application of ultrasonic microreactor in the beverage and pharmaceutical industries.</p></div>\",\"PeriodicalId\":630,\"journal\":{\"name\":\"Journal of Flow Chemistry\",\"volume\":\"14 3\",\"pages\":\"569 - 584\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Flow Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41981-024-00331-2\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flow Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41981-024-00331-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在实验室建造的超声波微反应器中,对高粘度液体之间的声空化和超声波辅助乳化过程进行了系统的实验研究。在超声波照射下,大豆油中同时出现了四种空化模式,包括体积空化、形状空化、瞬时塌陷空化和空化云。受空化气泡强烈振荡的影响,粘性液体之间通过分散和迁移模式开始乳化。以水-豆油两相体系为模型,研究了不同参数(如输入功率、停留时间、通道尺寸、HLB 值、表面活性剂浓度以及水相和油相之间的体积比)对所制备乳液的粒度和多分散性的影响。通过优化实验参数,乳液粒度减小到 75.60 nm。基于这些发现,超声微反应器被成功用于制备富含维生素 E 的纳米乳液。在 2 分钟内就制备出了平均粒径较小(47.69 nm)且具有良好储存稳定性(60 天)的精细乳液,这进一步表明了超声波微反应器在饮料和制药行业的应用潜力。
Enhanced emulsification process between viscous liquids in an ultrasonic capillary microreactor: mechanism analysis and application in nano-emulsion preparation
Experimental investigations into acoustic cavitation and ultrasound-assited emulsification process between highly viscous liquids were systematically conducted in a laboratory-built ultrasonic microreactor. Under ultrasound irradiation, four cavitation modes were observed simultaneously in soybean oil, including volume, shape, transient collapse and cavitation clouds. Influenced by the intense oscillation of cavitation bubbles, emulsification between viscous liquids was initiated through a dispersion and migration mode. The effects of varying parameters, such as input power, residence time, channel size, HLB value, surfactant concentration and volume ratio between aqueous and oil phase, on the size and polydispersity of prepared emulsion were investigated using water-soybean oil two-phase system as a model. The emulsion size was reduced to 75.60 nm through optimization of experimental parameters. Based on these findings, the ultrasonic microreactor was successfully employed in the preparation of Vitamin E-enriched nano-emulsions. A fine emulsion with low average size (47.69 nm) and good storage stability (60 days) was prepared within 2 min, further indicating the potential application of ultrasonic microreactor in the beverage and pharmaceutical industries.
期刊介绍:
The main focus of the journal is flow chemistry in inorganic, organic, analytical and process chemistry in the academic research as well as in applied research and development in the pharmaceutical, agrochemical, fine-chemical, petro- chemical, fragrance industry.