{"title":"用于增强 SST-1 托卡马克天线与等离子体耦合阻抗的螺旋天线分析","authors":"Dimple Yadav, Vishant Gahlaut, Meenu Kaushik, Raj Singh","doi":"10.1515/freq-2023-0433","DOIUrl":null,"url":null,"abstract":"A detailed characterization of a high-power radio frequency (RF) broadband circularly polarized two-arm spiral antenna is designed to operate within the frequency range of 0.1–1.0 GHz. The impedance matching network technique is introduced to optimize its performance. The traditional spiral antenna is excited by a vertical or horizontal balun, whereas the proposed design is directly fed by a coaxial cable featuring a planar feeding section specially optimized to achieve broadband input impedance matching. The spiral antenna is designed as per the steady-state superconducting tokamak (SST-1) port space constraints. The simulated efficiency of the RF power coupling with the hydrogen plasma is ∼70 %. Through simulation, it was evident that the proposed antenna exhibited inherent resonance at 0.5 GHz with a reflection coefficient of −27.94 dB and an axial ratio is 3.39 dB respectively. The obtained outcomes unequivocally demonstrate the circular polarization of the designed antenna. Overall, the findings support the enhancement of plasma heating and current drive techniques in fusion research.","PeriodicalId":55143,"journal":{"name":"Frequenz","volume":"20 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of spiral antenna for enhancing antenna-plasma coupling impedance for SST-1 tokamak\",\"authors\":\"Dimple Yadav, Vishant Gahlaut, Meenu Kaushik, Raj Singh\",\"doi\":\"10.1515/freq-2023-0433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A detailed characterization of a high-power radio frequency (RF) broadband circularly polarized two-arm spiral antenna is designed to operate within the frequency range of 0.1–1.0 GHz. The impedance matching network technique is introduced to optimize its performance. The traditional spiral antenna is excited by a vertical or horizontal balun, whereas the proposed design is directly fed by a coaxial cable featuring a planar feeding section specially optimized to achieve broadband input impedance matching. The spiral antenna is designed as per the steady-state superconducting tokamak (SST-1) port space constraints. The simulated efficiency of the RF power coupling with the hydrogen plasma is ∼70 %. Through simulation, it was evident that the proposed antenna exhibited inherent resonance at 0.5 GHz with a reflection coefficient of −27.94 dB and an axial ratio is 3.39 dB respectively. The obtained outcomes unequivocally demonstrate the circular polarization of the designed antenna. Overall, the findings support the enhancement of plasma heating and current drive techniques in fusion research.\",\"PeriodicalId\":55143,\"journal\":{\"name\":\"Frequenz\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frequenz\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/freq-2023-0433\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frequenz","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/freq-2023-0433","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Analysis of spiral antenna for enhancing antenna-plasma coupling impedance for SST-1 tokamak
A detailed characterization of a high-power radio frequency (RF) broadband circularly polarized two-arm spiral antenna is designed to operate within the frequency range of 0.1–1.0 GHz. The impedance matching network technique is introduced to optimize its performance. The traditional spiral antenna is excited by a vertical or horizontal balun, whereas the proposed design is directly fed by a coaxial cable featuring a planar feeding section specially optimized to achieve broadband input impedance matching. The spiral antenna is designed as per the steady-state superconducting tokamak (SST-1) port space constraints. The simulated efficiency of the RF power coupling with the hydrogen plasma is ∼70 %. Through simulation, it was evident that the proposed antenna exhibited inherent resonance at 0.5 GHz with a reflection coefficient of −27.94 dB and an axial ratio is 3.39 dB respectively. The obtained outcomes unequivocally demonstrate the circular polarization of the designed antenna. Overall, the findings support the enhancement of plasma heating and current drive techniques in fusion research.
期刊介绍:
Frequenz is one of the leading scientific and technological journals covering all aspects of RF-, Microwave-, and THz-Engineering. It is a peer-reviewed, bi-monthly published journal.
Frequenz was first published in 1947 with a circulation of 7000 copies, focusing on telecommunications. Today, the major objective of Frequenz is to highlight current research activities and development efforts in RF-, Microwave-, and THz-Engineering throughout a wide frequency spectrum ranging from radio via microwave up to THz frequencies.
RF-, Microwave-, and THz-Engineering is a very active area of Research & Development as well as of Applications in a wide variety of fields. It has been the key to enabling technologies responsible for phenomenal growth of satellite broadcasting, wireless communications, satellite and terrestrial mobile communications and navigation, high-speed THz communication systems. It will open up new technologies in communications, radar, remote sensing and imaging, in identification and localization as well as in sensors, e.g. for wireless industrial process and environmental monitoring as well as for biomedical sensing.