{"title":"使用石墨烯基透射元表面的双向三波段真正入射角不敏感极化转换器,用于太赫兹频率","authors":"Hiranmay Mistri, Anumoy Ghosh, Manaj Dandapathak","doi":"10.1515/freq-2024-0065","DOIUrl":null,"url":null,"abstract":"The design and response of a triple-band linear-to-circular polarization converter (LTCPC) in the terahertz frequency regime using a graphene-based transmission-type metasurface have been studied numerically and analytically. The unit cell of the converter is constructed using lossy silicon dioxide (SiO<jats:sub>2</jats:sub>) with a relative permittivity of 3.9 as the substrate. And two similar layers of graphene-based sub-wavelength structures are used at the top and bottom of it. Multiband linear to circular polarization conversion is achieved from 0.74 THz to 0.98 THz, 1.70 THz to 2.33 THz, and 4.06 THz to 5.19 THz, i.e., about 28 %, 31 %, and 24 % fractional bandwidths, respectively. As the same metasurface configuration is used at the top and bottom layers of the transmission-type unit cell, it can be used as a bidirectional polarization converter with identical responses from both sides. The geometrical optimization of the unit cell is done, and an equivalent lumped parameter circuit model is also proposed for the same, considering analogous responses. Tunability over the operating frequency is achieved by varying the chemical potential and relaxation time of graphene. Moreover, due to the ultrathin width and special types of identical configuration of the metasurfaces, the response of the system remains excellent over a wide range of incident angle variations up to 80° angle of incidence.","PeriodicalId":55143,"journal":{"name":"Frequenz","volume":"72 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bidirectional triple-band truly incident angle insensitive polarization converter using graphene-based transmissive metasurface for terahertz frequency\",\"authors\":\"Hiranmay Mistri, Anumoy Ghosh, Manaj Dandapathak\",\"doi\":\"10.1515/freq-2024-0065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design and response of a triple-band linear-to-circular polarization converter (LTCPC) in the terahertz frequency regime using a graphene-based transmission-type metasurface have been studied numerically and analytically. The unit cell of the converter is constructed using lossy silicon dioxide (SiO<jats:sub>2</jats:sub>) with a relative permittivity of 3.9 as the substrate. And two similar layers of graphene-based sub-wavelength structures are used at the top and bottom of it. Multiband linear to circular polarization conversion is achieved from 0.74 THz to 0.98 THz, 1.70 THz to 2.33 THz, and 4.06 THz to 5.19 THz, i.e., about 28 %, 31 %, and 24 % fractional bandwidths, respectively. As the same metasurface configuration is used at the top and bottom layers of the transmission-type unit cell, it can be used as a bidirectional polarization converter with identical responses from both sides. The geometrical optimization of the unit cell is done, and an equivalent lumped parameter circuit model is also proposed for the same, considering analogous responses. Tunability over the operating frequency is achieved by varying the chemical potential and relaxation time of graphene. Moreover, due to the ultrathin width and special types of identical configuration of the metasurfaces, the response of the system remains excellent over a wide range of incident angle variations up to 80° angle of incidence.\",\"PeriodicalId\":55143,\"journal\":{\"name\":\"Frequenz\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frequenz\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/freq-2024-0065\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frequenz","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/freq-2024-0065","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Bidirectional triple-band truly incident angle insensitive polarization converter using graphene-based transmissive metasurface for terahertz frequency
The design and response of a triple-band linear-to-circular polarization converter (LTCPC) in the terahertz frequency regime using a graphene-based transmission-type metasurface have been studied numerically and analytically. The unit cell of the converter is constructed using lossy silicon dioxide (SiO2) with a relative permittivity of 3.9 as the substrate. And two similar layers of graphene-based sub-wavelength structures are used at the top and bottom of it. Multiband linear to circular polarization conversion is achieved from 0.74 THz to 0.98 THz, 1.70 THz to 2.33 THz, and 4.06 THz to 5.19 THz, i.e., about 28 %, 31 %, and 24 % fractional bandwidths, respectively. As the same metasurface configuration is used at the top and bottom layers of the transmission-type unit cell, it can be used as a bidirectional polarization converter with identical responses from both sides. The geometrical optimization of the unit cell is done, and an equivalent lumped parameter circuit model is also proposed for the same, considering analogous responses. Tunability over the operating frequency is achieved by varying the chemical potential and relaxation time of graphene. Moreover, due to the ultrathin width and special types of identical configuration of the metasurfaces, the response of the system remains excellent over a wide range of incident angle variations up to 80° angle of incidence.
期刊介绍:
Frequenz is one of the leading scientific and technological journals covering all aspects of RF-, Microwave-, and THz-Engineering. It is a peer-reviewed, bi-monthly published journal.
Frequenz was first published in 1947 with a circulation of 7000 copies, focusing on telecommunications. Today, the major objective of Frequenz is to highlight current research activities and development efforts in RF-, Microwave-, and THz-Engineering throughout a wide frequency spectrum ranging from radio via microwave up to THz frequencies.
RF-, Microwave-, and THz-Engineering is a very active area of Research & Development as well as of Applications in a wide variety of fields. It has been the key to enabling technologies responsible for phenomenal growth of satellite broadcasting, wireless communications, satellite and terrestrial mobile communications and navigation, high-speed THz communication systems. It will open up new technologies in communications, radar, remote sensing and imaging, in identification and localization as well as in sensors, e.g. for wireless industrial process and environmental monitoring as well as for biomedical sensing.