用不同的有机连接体制造共价键合的 MoS2 石墨烯异质结构

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Communications Materials Pub Date : 2024-07-18 DOI:10.1038/s43246-024-00571-8
Lei Chen, Hui-Lei Hou, Maurizio Prato
{"title":"用不同的有机连接体制造共价键合的 MoS2 石墨烯异质结构","authors":"Lei Chen, Hui-Lei Hou, Maurizio Prato","doi":"10.1038/s43246-024-00571-8","DOIUrl":null,"url":null,"abstract":"Achieving stable and reliable 2D-2D van der Waals heterostructures remains challenging. The broadest strategy for synthesizing these heterostructures is growth or manually stacking one material on top of the other, yet it is inefficient. Here, we present a strategy for synthesizing covalently bonded MoS2-graphene heterostructures using organic linkers with two anchor sites at a low cost. Our covalent heterostructures exhibit a more homogeneously alternating structure than the corresponding randomly alternating structure of vdW heterostructures, as confirmed by surface-enhanced Raman spectroscopy (SERS) measurements. Moreover, different linkers can be used to adjust the interlayer distance between graphene and MoS2, leading to significant impacts on their optical and electrochemical properties, including Photoluminescence (PL), cyclic voltammetry (CV), Ultraviolet-visible spectroscopy (UV-Vis), and SERS. Our strategy offers opportunities to advance fundamental research and enable the practical application of 2D/2D van der Waals heterostructures in various fields, including optoelectronics, energy storage, and catalysis. Fabricating stable and reliable van der Waals heterostructures made of stacked 2D materials remains challenging. Here, the authors present a strategy for synthesizing covalently bonded MoS2-graphene heterostructures using organic linkers.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00571-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Fabrication of covalently bonded MoS2–graphene heterostructures with different organic linkers\",\"authors\":\"Lei Chen, Hui-Lei Hou, Maurizio Prato\",\"doi\":\"10.1038/s43246-024-00571-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Achieving stable and reliable 2D-2D van der Waals heterostructures remains challenging. The broadest strategy for synthesizing these heterostructures is growth or manually stacking one material on top of the other, yet it is inefficient. Here, we present a strategy for synthesizing covalently bonded MoS2-graphene heterostructures using organic linkers with two anchor sites at a low cost. Our covalent heterostructures exhibit a more homogeneously alternating structure than the corresponding randomly alternating structure of vdW heterostructures, as confirmed by surface-enhanced Raman spectroscopy (SERS) measurements. Moreover, different linkers can be used to adjust the interlayer distance between graphene and MoS2, leading to significant impacts on their optical and electrochemical properties, including Photoluminescence (PL), cyclic voltammetry (CV), Ultraviolet-visible spectroscopy (UV-Vis), and SERS. Our strategy offers opportunities to advance fundamental research and enable the practical application of 2D/2D van der Waals heterostructures in various fields, including optoelectronics, energy storage, and catalysis. Fabricating stable and reliable van der Waals heterostructures made of stacked 2D materials remains challenging. Here, the authors present a strategy for synthesizing covalently bonded MoS2-graphene heterostructures using organic linkers.\",\"PeriodicalId\":10589,\"journal\":{\"name\":\"Communications Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43246-024-00571-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43246-024-00571-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00571-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

实现稳定可靠的二维-二维范德华异质结构仍然具有挑战性。合成这些异质结构的最广泛策略是生长或人工将一种材料堆叠在另一种材料之上,但这种方法效率低下。在这里,我们提出了一种利用具有两个锚定位点的有机连接体合成共价键 MoS2-石墨烯异质结构的低成本策略。与 vdW 异质结构的相应随机交替结构相比,我们的共价异质结构表现出更均匀的交替结构,这一点已被表面增强拉曼光谱(SERS)测量所证实。此外,还可以使用不同的连接剂来调整石墨烯和 MoS2 之间的层间距离,从而对它们的光学和电化学特性产生重大影响,包括光致发光 (PL)、循环伏安 (CV)、紫外可见光谱 (UV-Vis) 和 SERS。我们的战略为推进基础研究和二维/二维范德华异质结构在光电、储能和催化等各个领域的实际应用提供了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fabrication of covalently bonded MoS2–graphene heterostructures with different organic linkers
Achieving stable and reliable 2D-2D van der Waals heterostructures remains challenging. The broadest strategy for synthesizing these heterostructures is growth or manually stacking one material on top of the other, yet it is inefficient. Here, we present a strategy for synthesizing covalently bonded MoS2-graphene heterostructures using organic linkers with two anchor sites at a low cost. Our covalent heterostructures exhibit a more homogeneously alternating structure than the corresponding randomly alternating structure of vdW heterostructures, as confirmed by surface-enhanced Raman spectroscopy (SERS) measurements. Moreover, different linkers can be used to adjust the interlayer distance between graphene and MoS2, leading to significant impacts on their optical and electrochemical properties, including Photoluminescence (PL), cyclic voltammetry (CV), Ultraviolet-visible spectroscopy (UV-Vis), and SERS. Our strategy offers opportunities to advance fundamental research and enable the practical application of 2D/2D van der Waals heterostructures in various fields, including optoelectronics, energy storage, and catalysis. Fabricating stable and reliable van der Waals heterostructures made of stacked 2D materials remains challenging. Here, the authors present a strategy for synthesizing covalently bonded MoS2-graphene heterostructures using organic linkers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
期刊最新文献
Thermodynamic evidence for polaron stabilization inside the antiferromagnetic order of Eu5In2Sb6 Benefits and complexity of defects in metal-organic frameworks Multi-sensing yarns for continuous wireless sweat lactate monitoring Unexpected band structure changes within the higher-temperature antiferromagnetic state of CeBi Bioengineering approach for the design of magnetic bacterial cellulose membranes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1