{"title":"用不同的有机连接体制造共价键合的 MoS2 石墨烯异质结构","authors":"Lei Chen, Hui-Lei Hou, Maurizio Prato","doi":"10.1038/s43246-024-00571-8","DOIUrl":null,"url":null,"abstract":"Achieving stable and reliable 2D-2D van der Waals heterostructures remains challenging. The broadest strategy for synthesizing these heterostructures is growth or manually stacking one material on top of the other, yet it is inefficient. Here, we present a strategy for synthesizing covalently bonded MoS2-graphene heterostructures using organic linkers with two anchor sites at a low cost. Our covalent heterostructures exhibit a more homogeneously alternating structure than the corresponding randomly alternating structure of vdW heterostructures, as confirmed by surface-enhanced Raman spectroscopy (SERS) measurements. Moreover, different linkers can be used to adjust the interlayer distance between graphene and MoS2, leading to significant impacts on their optical and electrochemical properties, including Photoluminescence (PL), cyclic voltammetry (CV), Ultraviolet-visible spectroscopy (UV-Vis), and SERS. Our strategy offers opportunities to advance fundamental research and enable the practical application of 2D/2D van der Waals heterostructures in various fields, including optoelectronics, energy storage, and catalysis. Fabricating stable and reliable van der Waals heterostructures made of stacked 2D materials remains challenging. Here, the authors present a strategy for synthesizing covalently bonded MoS2-graphene heterostructures using organic linkers.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00571-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Fabrication of covalently bonded MoS2–graphene heterostructures with different organic linkers\",\"authors\":\"Lei Chen, Hui-Lei Hou, Maurizio Prato\",\"doi\":\"10.1038/s43246-024-00571-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Achieving stable and reliable 2D-2D van der Waals heterostructures remains challenging. The broadest strategy for synthesizing these heterostructures is growth or manually stacking one material on top of the other, yet it is inefficient. Here, we present a strategy for synthesizing covalently bonded MoS2-graphene heterostructures using organic linkers with two anchor sites at a low cost. Our covalent heterostructures exhibit a more homogeneously alternating structure than the corresponding randomly alternating structure of vdW heterostructures, as confirmed by surface-enhanced Raman spectroscopy (SERS) measurements. Moreover, different linkers can be used to adjust the interlayer distance between graphene and MoS2, leading to significant impacts on their optical and electrochemical properties, including Photoluminescence (PL), cyclic voltammetry (CV), Ultraviolet-visible spectroscopy (UV-Vis), and SERS. Our strategy offers opportunities to advance fundamental research and enable the practical application of 2D/2D van der Waals heterostructures in various fields, including optoelectronics, energy storage, and catalysis. Fabricating stable and reliable van der Waals heterostructures made of stacked 2D materials remains challenging. Here, the authors present a strategy for synthesizing covalently bonded MoS2-graphene heterostructures using organic linkers.\",\"PeriodicalId\":10589,\"journal\":{\"name\":\"Communications Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43246-024-00571-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43246-024-00571-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00571-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Fabrication of covalently bonded MoS2–graphene heterostructures with different organic linkers
Achieving stable and reliable 2D-2D van der Waals heterostructures remains challenging. The broadest strategy for synthesizing these heterostructures is growth or manually stacking one material on top of the other, yet it is inefficient. Here, we present a strategy for synthesizing covalently bonded MoS2-graphene heterostructures using organic linkers with two anchor sites at a low cost. Our covalent heterostructures exhibit a more homogeneously alternating structure than the corresponding randomly alternating structure of vdW heterostructures, as confirmed by surface-enhanced Raman spectroscopy (SERS) measurements. Moreover, different linkers can be used to adjust the interlayer distance between graphene and MoS2, leading to significant impacts on their optical and electrochemical properties, including Photoluminescence (PL), cyclic voltammetry (CV), Ultraviolet-visible spectroscopy (UV-Vis), and SERS. Our strategy offers opportunities to advance fundamental research and enable the practical application of 2D/2D van der Waals heterostructures in various fields, including optoelectronics, energy storage, and catalysis. Fabricating stable and reliable van der Waals heterostructures made of stacked 2D materials remains challenging. Here, the authors present a strategy for synthesizing covalently bonded MoS2-graphene heterostructures using organic linkers.
期刊介绍:
Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.