研究水母搜索优化器在投影追寻应用中的性能

H. Sherry Zhang, Dianne Cook, Nicolas Langrené, Jessica Wai Yin Leung
{"title":"研究水母搜索优化器在投影追寻应用中的性能","authors":"H. Sherry Zhang, Dianne Cook, Nicolas Langrené, Jessica Wai Yin Leung","doi":"arxiv-2407.13663","DOIUrl":null,"url":null,"abstract":"The projection pursuit (PP) guided tour interactively optimises a criteria\nfunction known as the PP index, to explore high-dimensional data by revealing\ninteresting projections. The optimisation in PP can be non-trivial, involving\nnon-smooth functions and optima with a small squint angle, detectable only from\nclose proximity. To address these challenges, this study investigates the\nperformance of a recently introduced swarm-based algorithm, Jellyfish Search\nOptimiser (JSO), for optimising PP indexes. The performance of JSO for\nvisualising data is evaluated across various hyper-parameter settings and\ncompared with existing optimisers. Additionally, this work proposes novel\nmethods to quantify two properties of the PP index, smoothness and\nsquintability that capture the complexities inherent in PP optimisation\nproblems. These two metrics are evaluated along with JSO hyper-parameters to\ndetermine their effects on JSO success rate. Our numerical results confirm the\npositive impact of these metrics on the JSO success rate, with squintability\nbeing the most significant. The JSO algorithm has been implemented in the tourr\npackage and functions to calculate smoothness and squintability are available\nin the ferrn package.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Studying the Performance of the Jellyfish Search Optimiser for the Application of Projection Pursuit\",\"authors\":\"H. Sherry Zhang, Dianne Cook, Nicolas Langrené, Jessica Wai Yin Leung\",\"doi\":\"arxiv-2407.13663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The projection pursuit (PP) guided tour interactively optimises a criteria\\nfunction known as the PP index, to explore high-dimensional data by revealing\\ninteresting projections. The optimisation in PP can be non-trivial, involving\\nnon-smooth functions and optima with a small squint angle, detectable only from\\nclose proximity. To address these challenges, this study investigates the\\nperformance of a recently introduced swarm-based algorithm, Jellyfish Search\\nOptimiser (JSO), for optimising PP indexes. The performance of JSO for\\nvisualising data is evaluated across various hyper-parameter settings and\\ncompared with existing optimisers. Additionally, this work proposes novel\\nmethods to quantify two properties of the PP index, smoothness and\\nsquintability that capture the complexities inherent in PP optimisation\\nproblems. These two metrics are evaluated along with JSO hyper-parameters to\\ndetermine their effects on JSO success rate. Our numerical results confirm the\\npositive impact of these metrics on the JSO success rate, with squintability\\nbeing the most significant. The JSO algorithm has been implemented in the tourr\\npackage and functions to calculate smoothness and squintability are available\\nin the ferrn package.\",\"PeriodicalId\":501215,\"journal\":{\"name\":\"arXiv - STAT - Computation\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.13663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.13663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

投影追寻(PP)导览以交互方式优化称为 PP 指数的标准函数,通过揭示有趣的投影来探索高维数据。投影追寻中的优化过程可能并不复杂,会涉及非光滑函数和眯眼角度较小的最优点,只能从近距离探测到。为了应对这些挑战,本研究对最近推出的基于蜂群的算法水母搜索优化器(JSO)的性能进行了研究,以优化 PP 索引。研究评估了 JSO 在不同超参数设置下的数据可视化性能,并与现有优化器进行了比较。此外,这项工作还提出了新方法来量化 PP 指数的两个属性,即平滑性和可量化性,这两个属性捕捉了 PP 优化问题固有的复杂性。我们对这两个指标以及 JSO 超参数进行了评估,以确定它们对 JSO 成功率的影响。我们的数值结果证实了这些指标对 JSO 成功率的积极影响,其中斜视性最为显著。JSO 算法已在 tourr 包中实现,计算平滑度和斜视度的函数可在 ferrn 包中获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Studying the Performance of the Jellyfish Search Optimiser for the Application of Projection Pursuit
The projection pursuit (PP) guided tour interactively optimises a criteria function known as the PP index, to explore high-dimensional data by revealing interesting projections. The optimisation in PP can be non-trivial, involving non-smooth functions and optima with a small squint angle, detectable only from close proximity. To address these challenges, this study investigates the performance of a recently introduced swarm-based algorithm, Jellyfish Search Optimiser (JSO), for optimising PP indexes. The performance of JSO for visualising data is evaluated across various hyper-parameter settings and compared with existing optimisers. Additionally, this work proposes novel methods to quantify two properties of the PP index, smoothness and squintability that capture the complexities inherent in PP optimisation problems. These two metrics are evaluated along with JSO hyper-parameters to determine their effects on JSO success rate. Our numerical results confirm the positive impact of these metrics on the JSO success rate, with squintability being the most significant. The JSO algorithm has been implemented in the tourr package and functions to calculate smoothness and squintability are available in the ferrn package.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model-Embedded Gaussian Process Regression for Parameter Estimation in Dynamical System Effects of the entropy source on Monte Carlo simulations A Robust Approach to Gaussian Processes Implementation HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models Reducing Shape-Graph Complexity with Application to Classification of Retinal Blood Vessels and Neurons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1