定量切片采样

Matthew J. Heiner, Samuel B. Johnson, Joshua R. Christensen, David B. Dahl
{"title":"定量切片采样","authors":"Matthew J. Heiner, Samuel B. Johnson, Joshua R. Christensen, David B. Dahl","doi":"arxiv-2407.12608","DOIUrl":null,"url":null,"abstract":"We propose and demonstrate an alternate, effective approach to simple slice\nsampling. Using the probability integral transform, we first generalize Neal's\nshrinkage algorithm, standardizing the procedure to an automatic and universal\nstarting point: the unit interval. This enables the introduction of approximate\n(pseudo-) targets through importance reweighting, a technique that has\npopularized elliptical slice sampling. Reasonably accurate pseudo-targets can\nboost sampler efficiency by requiring fewer rejections and by reducing target\nskewness. This strategy is effective when a natural, possibly crude,\napproximation to the target exists. Alternatively, obtaining a marginal\npseudo-target from initial samples provides an intuitive and automatic tuning\nprocedure. We consider two metrics for evaluating the quality of approximation;\neach can be used as a criterion to find an optimal pseudo-target or as an\ninterpretable diagnostic. We examine performance of the proposed sampler\nrelative to other popular, easily implemented MCMC samplers on standard targets\nin isolation, and as steps within a Gibbs sampler in a Bayesian modeling\ncontext. We extend the transformation method to multivariate slice samplers and\ndemonstrate with a constrained state-space model for which a readily available\nforward-backward algorithm provides the target approximation.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantile Slice Sampling\",\"authors\":\"Matthew J. Heiner, Samuel B. Johnson, Joshua R. Christensen, David B. Dahl\",\"doi\":\"arxiv-2407.12608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose and demonstrate an alternate, effective approach to simple slice\\nsampling. Using the probability integral transform, we first generalize Neal's\\nshrinkage algorithm, standardizing the procedure to an automatic and universal\\nstarting point: the unit interval. This enables the introduction of approximate\\n(pseudo-) targets through importance reweighting, a technique that has\\npopularized elliptical slice sampling. Reasonably accurate pseudo-targets can\\nboost sampler efficiency by requiring fewer rejections and by reducing target\\nskewness. This strategy is effective when a natural, possibly crude,\\napproximation to the target exists. Alternatively, obtaining a marginal\\npseudo-target from initial samples provides an intuitive and automatic tuning\\nprocedure. We consider two metrics for evaluating the quality of approximation;\\neach can be used as a criterion to find an optimal pseudo-target or as an\\ninterpretable diagnostic. We examine performance of the proposed sampler\\nrelative to other popular, easily implemented MCMC samplers on standard targets\\nin isolation, and as steps within a Gibbs sampler in a Bayesian modeling\\ncontext. We extend the transformation method to multivariate slice samplers and\\ndemonstrate with a constrained state-space model for which a readily available\\nforward-backward algorithm provides the target approximation.\",\"PeriodicalId\":501215,\"journal\":{\"name\":\"arXiv - STAT - Computation\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.12608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.12608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出并演示了另一种有效的简单切片取样方法。利用概率积分变换,我们首先概括了尼尔的缩减算法,将程序标准化为一个自动的通用起点:单位区间。这样就能通过重要度再加权引入近似(伪)目标,这种技术已在椭圆切片采样中得到普及。合理精确的伪目标可以减少剔除次数,降低目标偏差,从而提高采样器的效率。当目标存在一个自然的(可能是粗糙的)近似值时,这种策略就很有效。另外,从初始样本中获取边际伪目标也提供了一种直观的自动调整程序。我们考虑了两种评估近似质量的指标;每种指标都可用作寻找最佳伪目标的标准或可解释的诊断。我们检验了所提出的采样器与其他流行的、易于实现的 MCMC 采样器相比在标准目标上的性能,以及在贝叶斯建模背景下作为吉布斯采样器中的步骤的性能。我们将转换方法扩展到多变量切片采样器,并用一个受限状态空间模型进行了演示,该模型的前向-后向算法提供了目标近似值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantile Slice Sampling
We propose and demonstrate an alternate, effective approach to simple slice sampling. Using the probability integral transform, we first generalize Neal's shrinkage algorithm, standardizing the procedure to an automatic and universal starting point: the unit interval. This enables the introduction of approximate (pseudo-) targets through importance reweighting, a technique that has popularized elliptical slice sampling. Reasonably accurate pseudo-targets can boost sampler efficiency by requiring fewer rejections and by reducing target skewness. This strategy is effective when a natural, possibly crude, approximation to the target exists. Alternatively, obtaining a marginal pseudo-target from initial samples provides an intuitive and automatic tuning procedure. We consider two metrics for evaluating the quality of approximation; each can be used as a criterion to find an optimal pseudo-target or as an interpretable diagnostic. We examine performance of the proposed sampler relative to other popular, easily implemented MCMC samplers on standard targets in isolation, and as steps within a Gibbs sampler in a Bayesian modeling context. We extend the transformation method to multivariate slice samplers and demonstrate with a constrained state-space model for which a readily available forward-backward algorithm provides the target approximation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model-Embedded Gaussian Process Regression for Parameter Estimation in Dynamical System Effects of the entropy source on Monte Carlo simulations A Robust Approach to Gaussian Processes Implementation HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models Reducing Shape-Graph Complexity with Application to Classification of Retinal Blood Vessels and Neurons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1