SimpleSets:用简单形状捕捉分类点模式

Steven van den Broek, Wouter Meulemans, Bettina Speckmann
{"title":"SimpleSets:用简单形状捕捉分类点模式","authors":"Steven van den Broek, Wouter Meulemans, Bettina Speckmann","doi":"arxiv-2407.14433","DOIUrl":null,"url":null,"abstract":"Points of interest on a map such as restaurants, hotels, or subway stations,\ngive rise to categorical point data: data that have a fixed location and one or\nmore categorical attributes. Consequently, recent years have seen various set\nvisualization approaches that visually connect points of the same category to\nsupport users in understanding the spatial distribution of categories. Existing\nmethods use complex and often highly irregular shapes to connect points of the\nsame category, leading to high cognitive load for the user. In this paper we\nintroduce SimpleSets, which uses simple shapes to enclose categorical point\npatterns, thereby providing a clean overview of the data distribution.\nSimpleSets is designed to visualize sets of points with a single categorical\nattribute; as a result, the point patterns enclosed by SimpleSets form a\npartition of the data. We give formal definitions of point patterns that\ncorrespond to simple shapes and describe an algorithm that partitions\ncategorical points into few such patterns. Our second contribution is a\nrendering algorithm that transforms a given partition into a clean set of\nshapes resulting in an aesthetically pleasing set visualization. Our algorithm\npays particular attention to resolving intersections between nearby shapes in a\nconsistent manner. We compare SimpleSets to the state-of-the-art set\nvisualizations using standard datasets from the literature.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SimpleSets: Capturing Categorical Point Patterns with Simple Shapes\",\"authors\":\"Steven van den Broek, Wouter Meulemans, Bettina Speckmann\",\"doi\":\"arxiv-2407.14433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Points of interest on a map such as restaurants, hotels, or subway stations,\\ngive rise to categorical point data: data that have a fixed location and one or\\nmore categorical attributes. Consequently, recent years have seen various set\\nvisualization approaches that visually connect points of the same category to\\nsupport users in understanding the spatial distribution of categories. Existing\\nmethods use complex and often highly irregular shapes to connect points of the\\nsame category, leading to high cognitive load for the user. In this paper we\\nintroduce SimpleSets, which uses simple shapes to enclose categorical point\\npatterns, thereby providing a clean overview of the data distribution.\\nSimpleSets is designed to visualize sets of points with a single categorical\\nattribute; as a result, the point patterns enclosed by SimpleSets form a\\npartition of the data. We give formal definitions of point patterns that\\ncorrespond to simple shapes and describe an algorithm that partitions\\ncategorical points into few such patterns. Our second contribution is a\\nrendering algorithm that transforms a given partition into a clean set of\\nshapes resulting in an aesthetically pleasing set visualization. Our algorithm\\npays particular attention to resolving intersections between nearby shapes in a\\nconsistent manner. We compare SimpleSets to the state-of-the-art set\\nvisualizations using standard datasets from the literature.\",\"PeriodicalId\":501570,\"journal\":{\"name\":\"arXiv - CS - Computational Geometry\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.14433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.14433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

地图上的兴趣点(如餐馆、酒店或地铁站)会产生分类点数据:即具有固定位置和一个或多个分类属性的数据。因此,近年来出现了各种集合可视化方法,这些方法将同一类别的点直观地连接起来,以帮助用户理解类别的空间分布。现有的方法使用复杂且通常极不规则的形状来连接同一类别的点,这给用户带来了很大的认知负担。在本文中,我们介绍了 SimpleSets,它使用简单的形状来围合分类点模式,从而提供数据分布的简洁概览。SimpleSets 的设计目的是将具有单一分类属性的点集可视化;因此,SimpleSets 所围合的点模式构成了数据的分割。我们给出了与简单形状相对应的点模式的正式定义,并描述了一种将分类点分割成少数几个此类模式的算法。我们的第二项贡献是一种dering算法,它能将给定的分区转化为干净的形状集,从而产生美观的集合可视化效果。我们的算法特别注重以一致的方式解决附近形状之间的交叉问题。我们使用文献中的标准数据集将 SimpleSets 与最先进的集合可视化技术进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SimpleSets: Capturing Categorical Point Patterns with Simple Shapes
Points of interest on a map such as restaurants, hotels, or subway stations, give rise to categorical point data: data that have a fixed location and one or more categorical attributes. Consequently, recent years have seen various set visualization approaches that visually connect points of the same category to support users in understanding the spatial distribution of categories. Existing methods use complex and often highly irregular shapes to connect points of the same category, leading to high cognitive load for the user. In this paper we introduce SimpleSets, which uses simple shapes to enclose categorical point patterns, thereby providing a clean overview of the data distribution. SimpleSets is designed to visualize sets of points with a single categorical attribute; as a result, the point patterns enclosed by SimpleSets form a partition of the data. We give formal definitions of point patterns that correspond to simple shapes and describe an algorithm that partitions categorical points into few such patterns. Our second contribution is a rendering algorithm that transforms a given partition into a clean set of shapes resulting in an aesthetically pleasing set visualization. Our algorithm pays particular attention to resolving intersections between nearby shapes in a consistent manner. We compare SimpleSets to the state-of-the-art set visualizations using standard datasets from the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Minimum Plane Bichromatic Spanning Trees Evolving Distributions Under Local Motion New Lower Bound and Algorithms for Online Geometric Hitting Set Problem Computing shortest paths amid non-overlapping weighted disks Fast Comparative Analysis of Merge Trees Using Locality Sensitive Hashing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1