{"title":"通过在喜马拉雅山西北部开展分子和田间研究,评估小麦种质对条锈病和白粉病的双重抗性","authors":"Shubham Verma, Harinder K. Chaudhary, Anila Badiyal, Kritika Singh, Kulveer Singh Dhillon, Akshay Pathania, Mukul Sharma","doi":"10.1007/s10681-024-03385-4","DOIUrl":null,"url":null,"abstract":"<p>Wheat production in cooler regions like the north-western Himalayas, is significantly impeded by devastating diseases, namely stripe rust (SR) and powdery mildew (PM). Genetic resistance against SR and PM loses effectiveness over time which underscores the importance of periodic disease screening. This study aims to assess resistance to SR and PM in 81 wheat genotypes across multiple locations over three years (2019–20, 2021–22 and 2022–23); and detect candidate genes (<i>Yr5</i>, <i>Yr10</i> and <i>Pm24</i>) for resistance using respective molecular markers viz., SSR/STS primers (STS7/8, Xp3000 and Xgwm337). The resistance towards SR and PM under natural epiphytotic conditions was displayed by eight and twelve genotypes respectively, across all locations. Notably, four genotypes (DH 202, HPW 368, HPW 373 and DH 114) were found resistant to both diseases. The phenotypic disease reaction for SR and PM was further validated through molecular markers. Genotypes DH 202, DH208, DH 217, CIMMYT Entry no. 23 and VL 829 emerged as high yielding disease resistant genotypes. Agrometeorological parameters specifically, precipitation and relative humidity exhibited significant positive correlations with disease incidence, leading to reduced grain yields. Genotype and genotype by environment interaction (GGE) biplot identified stable genotypes with less disease incidence over locations. Additionally, Kukumseri may serve as the optimal test site for screening wheat germplasm against SR, while Palampur and Kukumseri could be ideal for PM screening. Genotypes exhibiting combined disease resistance to both SR and PM, alongwith superior agronomic traits, hold promise for immediate deployment as wheat varieties or as potential donors for breeding resistant cultivars.</p>","PeriodicalId":11803,"journal":{"name":"Euphytica","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing dual resistance to stripe rust and powdery mildew in wheat germplasm through molecular and field studies across the north-western Himalayas\",\"authors\":\"Shubham Verma, Harinder K. Chaudhary, Anila Badiyal, Kritika Singh, Kulveer Singh Dhillon, Akshay Pathania, Mukul Sharma\",\"doi\":\"10.1007/s10681-024-03385-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Wheat production in cooler regions like the north-western Himalayas, is significantly impeded by devastating diseases, namely stripe rust (SR) and powdery mildew (PM). Genetic resistance against SR and PM loses effectiveness over time which underscores the importance of periodic disease screening. This study aims to assess resistance to SR and PM in 81 wheat genotypes across multiple locations over three years (2019–20, 2021–22 and 2022–23); and detect candidate genes (<i>Yr5</i>, <i>Yr10</i> and <i>Pm24</i>) for resistance using respective molecular markers viz., SSR/STS primers (STS7/8, Xp3000 and Xgwm337). The resistance towards SR and PM under natural epiphytotic conditions was displayed by eight and twelve genotypes respectively, across all locations. Notably, four genotypes (DH 202, HPW 368, HPW 373 and DH 114) were found resistant to both diseases. The phenotypic disease reaction for SR and PM was further validated through molecular markers. Genotypes DH 202, DH208, DH 217, CIMMYT Entry no. 23 and VL 829 emerged as high yielding disease resistant genotypes. Agrometeorological parameters specifically, precipitation and relative humidity exhibited significant positive correlations with disease incidence, leading to reduced grain yields. Genotype and genotype by environment interaction (GGE) biplot identified stable genotypes with less disease incidence over locations. Additionally, Kukumseri may serve as the optimal test site for screening wheat germplasm against SR, while Palampur and Kukumseri could be ideal for PM screening. Genotypes exhibiting combined disease resistance to both SR and PM, alongwith superior agronomic traits, hold promise for immediate deployment as wheat varieties or as potential donors for breeding resistant cultivars.</p>\",\"PeriodicalId\":11803,\"journal\":{\"name\":\"Euphytica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Euphytica\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10681-024-03385-4\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Euphytica","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10681-024-03385-4","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
Assessing dual resistance to stripe rust and powdery mildew in wheat germplasm through molecular and field studies across the north-western Himalayas
Wheat production in cooler regions like the north-western Himalayas, is significantly impeded by devastating diseases, namely stripe rust (SR) and powdery mildew (PM). Genetic resistance against SR and PM loses effectiveness over time which underscores the importance of periodic disease screening. This study aims to assess resistance to SR and PM in 81 wheat genotypes across multiple locations over three years (2019–20, 2021–22 and 2022–23); and detect candidate genes (Yr5, Yr10 and Pm24) for resistance using respective molecular markers viz., SSR/STS primers (STS7/8, Xp3000 and Xgwm337). The resistance towards SR and PM under natural epiphytotic conditions was displayed by eight and twelve genotypes respectively, across all locations. Notably, four genotypes (DH 202, HPW 368, HPW 373 and DH 114) were found resistant to both diseases. The phenotypic disease reaction for SR and PM was further validated through molecular markers. Genotypes DH 202, DH208, DH 217, CIMMYT Entry no. 23 and VL 829 emerged as high yielding disease resistant genotypes. Agrometeorological parameters specifically, precipitation and relative humidity exhibited significant positive correlations with disease incidence, leading to reduced grain yields. Genotype and genotype by environment interaction (GGE) biplot identified stable genotypes with less disease incidence over locations. Additionally, Kukumseri may serve as the optimal test site for screening wheat germplasm against SR, while Palampur and Kukumseri could be ideal for PM screening. Genotypes exhibiting combined disease resistance to both SR and PM, alongwith superior agronomic traits, hold promise for immediate deployment as wheat varieties or as potential donors for breeding resistant cultivars.
期刊介绍:
Euphytica is an international journal on theoretical and applied aspects of plant breeding. It publishes critical reviews and papers on the results of original research related to plant breeding.
The integration of modern and traditional plant breeding is a growing field of research using transgenic crop plants and/or marker assisted breeding in combination with traditional breeding tools. The content should cover the interests of researchers directly or indirectly involved in plant breeding, at universities, breeding institutes, seed industries, plant biotech companies and industries using plant raw materials, and promote stability, adaptability and sustainability in agriculture and agro-industries.