Stefano Brighenti, Nikolaus Obojes, Giacomo Bertoldi, Giulia Zuecco, Matteo Censini, Giorgio Cassiani, Daniele Penna, Francesco Comiti
{"title":"融雪和地下异质性控制亚高山森林中的树木水源","authors":"Stefano Brighenti, Nikolaus Obojes, Giacomo Bertoldi, Giulia Zuecco, Matteo Censini, Giorgio Cassiani, Daniele Penna, Francesco Comiti","doi":"10.1002/eco.2695","DOIUrl":null,"url":null,"abstract":"<p>In high mountain areas, snowmelt water is a key—yet fading—hydrological resource, but its importance for soil recharge and tree root water uptake is understudied. In these environments, heterogeneous terrains enhance a highly variable availability of soil and groundwater resources that can be accessed by plants. We conducted a tracer-based study on a subalpine forest in the Italian Alps. We investigated the isotopic composition (<sup>2</sup>H and <sup>18</sup>O) of snowmelt, precipitation, spring water, soil water—at different locations and depths—and xylem water of twigs taken from alpine larch, Swiss stone pine and alpenrose plants during bi-weekly field campaigns (growing seasons of 2020 and 2021). Mixing models based on δ<sup>18</sup>O revealed a large contribution of snowmelt to soil and xylem water, particularly during early summer. We investigated the contribution of water from different soil depths to xylem water, using the sap flow records to date back the end-member signatures. We found a flexible use of shallow and deeper soil water by the investigated plants, with groundwater more likely used by larger trees and during the late summer. Results based on isotopic data were combined with geophysical observations of the subsurface structure to develop a conceptual model about the different exploitation of water by plants depending on their location (shallow soil on a slope vs. a saturated area). Our study highlights the relevance of snowmelt in high-elevation terrestrial ecosystems, where heterogeneous substrates shape the water availability at different depths and, in turn, water uptake by plants.</p>","PeriodicalId":55169,"journal":{"name":"Ecohydrology","volume":"17 7","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eco.2695","citationCount":"0","resultStr":"{\"title\":\"Snowmelt and subsurface heterogeneity control tree water sources in a subalpine forest\",\"authors\":\"Stefano Brighenti, Nikolaus Obojes, Giacomo Bertoldi, Giulia Zuecco, Matteo Censini, Giorgio Cassiani, Daniele Penna, Francesco Comiti\",\"doi\":\"10.1002/eco.2695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In high mountain areas, snowmelt water is a key—yet fading—hydrological resource, but its importance for soil recharge and tree root water uptake is understudied. In these environments, heterogeneous terrains enhance a highly variable availability of soil and groundwater resources that can be accessed by plants. We conducted a tracer-based study on a subalpine forest in the Italian Alps. We investigated the isotopic composition (<sup>2</sup>H and <sup>18</sup>O) of snowmelt, precipitation, spring water, soil water—at different locations and depths—and xylem water of twigs taken from alpine larch, Swiss stone pine and alpenrose plants during bi-weekly field campaigns (growing seasons of 2020 and 2021). Mixing models based on δ<sup>18</sup>O revealed a large contribution of snowmelt to soil and xylem water, particularly during early summer. We investigated the contribution of water from different soil depths to xylem water, using the sap flow records to date back the end-member signatures. We found a flexible use of shallow and deeper soil water by the investigated plants, with groundwater more likely used by larger trees and during the late summer. Results based on isotopic data were combined with geophysical observations of the subsurface structure to develop a conceptual model about the different exploitation of water by plants depending on their location (shallow soil on a slope vs. a saturated area). Our study highlights the relevance of snowmelt in high-elevation terrestrial ecosystems, where heterogeneous substrates shape the water availability at different depths and, in turn, water uptake by plants.</p>\",\"PeriodicalId\":55169,\"journal\":{\"name\":\"Ecohydrology\",\"volume\":\"17 7\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eco.2695\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecohydrology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eco.2695\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecohydrology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eco.2695","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Snowmelt and subsurface heterogeneity control tree water sources in a subalpine forest
In high mountain areas, snowmelt water is a key—yet fading—hydrological resource, but its importance for soil recharge and tree root water uptake is understudied. In these environments, heterogeneous terrains enhance a highly variable availability of soil and groundwater resources that can be accessed by plants. We conducted a tracer-based study on a subalpine forest in the Italian Alps. We investigated the isotopic composition (2H and 18O) of snowmelt, precipitation, spring water, soil water—at different locations and depths—and xylem water of twigs taken from alpine larch, Swiss stone pine and alpenrose plants during bi-weekly field campaigns (growing seasons of 2020 and 2021). Mixing models based on δ18O revealed a large contribution of snowmelt to soil and xylem water, particularly during early summer. We investigated the contribution of water from different soil depths to xylem water, using the sap flow records to date back the end-member signatures. We found a flexible use of shallow and deeper soil water by the investigated plants, with groundwater more likely used by larger trees and during the late summer. Results based on isotopic data were combined with geophysical observations of the subsurface structure to develop a conceptual model about the different exploitation of water by plants depending on their location (shallow soil on a slope vs. a saturated area). Our study highlights the relevance of snowmelt in high-elevation terrestrial ecosystems, where heterogeneous substrates shape the water availability at different depths and, in turn, water uptake by plants.
期刊介绍:
Ecohydrology is an international journal publishing original scientific and review papers that aim to improve understanding of processes at the interface between ecology and hydrology and associated applications related to environmental management.
Ecohydrology seeks to increase interdisciplinary insights by placing particular emphasis on interactions and associated feedbacks in both space and time between ecological systems and the hydrological cycle. Research contributions are solicited from disciplines focusing on the physical, ecological, biological, biogeochemical, geomorphological, drainage basin, mathematical and methodological aspects of ecohydrology. Research in both terrestrial and aquatic systems is of interest provided it explicitly links ecological systems and the hydrologic cycle; research such as aquatic ecological, channel engineering, or ecological or hydrological modelling is less appropriate for the journal unless it specifically addresses the criteria above. Manuscripts describing individual case studies are of interest in cases where broader insights are discussed beyond site- and species-specific results.