Yuta Kimura, Takaya Fujisaki, Tetsuya Shimizu, Takashi Nakamura, Yasutoshi Iriyama, Koji Amezawa
{"title":"考虑固态电池固体电解质中锂化学势分布的涂布层设计原则","authors":"Yuta Kimura, Takaya Fujisaki, Tetsuya Shimizu, Takashi Nakamura, Yasutoshi Iriyama, Koji Amezawa","doi":"10.1038/s43246-024-00578-1","DOIUrl":null,"url":null,"abstract":"Introducing a coating layer at an active material /solid electrolyte interface is crucial for ensuring thermodynamic stability of the solid electrolyte at interfaces in solid-state batteries. To thermodynamically protect the solid electrolyte, coating layers must maintain lithium chemical potential (μLi) at coating layer/solid electrolyte interfaces within the electrochemical window of the solid electrolyte. However, a general coating layer design principle to achieve this remains unestablished. Here we theoretically elucidate the µLi distribution across the solid electrolyte and coating layer, examining requirements for thermodynamic protection. We show that the protective capability of coating layers is not solely determined by their intrinsic characteristics, but also by the µLi distribution within the solid electrolyte and coating layer. We propose a quantitative approach based on µLi distribution to determine the required characteristics and geometries of coating layers that ensure the thermodynamic stability of the solid electrolyte while minimizing ohmic resistance, providing insights for coating layer design. Coating layers are crucial for solid-state battery stability. Here, we investigated the lithium chemical potential distribution in the solid electrolyte and coating layer and propose a method to determine optimal coating layer properties, ensuring electrolyte stability while minimizing resistance.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00578-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Coating layer design principles considering lithium chemical potential distribution within solid electrolytes of solid-state batteries\",\"authors\":\"Yuta Kimura, Takaya Fujisaki, Tetsuya Shimizu, Takashi Nakamura, Yasutoshi Iriyama, Koji Amezawa\",\"doi\":\"10.1038/s43246-024-00578-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introducing a coating layer at an active material /solid electrolyte interface is crucial for ensuring thermodynamic stability of the solid electrolyte at interfaces in solid-state batteries. To thermodynamically protect the solid electrolyte, coating layers must maintain lithium chemical potential (μLi) at coating layer/solid electrolyte interfaces within the electrochemical window of the solid electrolyte. However, a general coating layer design principle to achieve this remains unestablished. Here we theoretically elucidate the µLi distribution across the solid electrolyte and coating layer, examining requirements for thermodynamic protection. We show that the protective capability of coating layers is not solely determined by their intrinsic characteristics, but also by the µLi distribution within the solid electrolyte and coating layer. We propose a quantitative approach based on µLi distribution to determine the required characteristics and geometries of coating layers that ensure the thermodynamic stability of the solid electrolyte while minimizing ohmic resistance, providing insights for coating layer design. Coating layers are crucial for solid-state battery stability. Here, we investigated the lithium chemical potential distribution in the solid electrolyte and coating layer and propose a method to determine optimal coating layer properties, ensuring electrolyte stability while minimizing resistance.\",\"PeriodicalId\":10589,\"journal\":{\"name\":\"Communications Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43246-024-00578-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43246-024-00578-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00578-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Coating layer design principles considering lithium chemical potential distribution within solid electrolytes of solid-state batteries
Introducing a coating layer at an active material /solid electrolyte interface is crucial for ensuring thermodynamic stability of the solid electrolyte at interfaces in solid-state batteries. To thermodynamically protect the solid electrolyte, coating layers must maintain lithium chemical potential (μLi) at coating layer/solid electrolyte interfaces within the electrochemical window of the solid electrolyte. However, a general coating layer design principle to achieve this remains unestablished. Here we theoretically elucidate the µLi distribution across the solid electrolyte and coating layer, examining requirements for thermodynamic protection. We show that the protective capability of coating layers is not solely determined by their intrinsic characteristics, but also by the µLi distribution within the solid electrolyte and coating layer. We propose a quantitative approach based on µLi distribution to determine the required characteristics and geometries of coating layers that ensure the thermodynamic stability of the solid electrolyte while minimizing ohmic resistance, providing insights for coating layer design. Coating layers are crucial for solid-state battery stability. Here, we investigated the lithium chemical potential distribution in the solid electrolyte and coating layer and propose a method to determine optimal coating layer properties, ensuring electrolyte stability while minimizing resistance.
期刊介绍:
Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.