考虑固态电池固体电解质中锂化学势分布的涂布层设计原则

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Communications Materials Pub Date : 2024-07-20 DOI:10.1038/s43246-024-00578-1
Yuta Kimura, Takaya Fujisaki, Tetsuya Shimizu, Takashi Nakamura, Yasutoshi Iriyama, Koji Amezawa
{"title":"考虑固态电池固体电解质中锂化学势分布的涂布层设计原则","authors":"Yuta Kimura, Takaya Fujisaki, Tetsuya Shimizu, Takashi Nakamura, Yasutoshi Iriyama, Koji Amezawa","doi":"10.1038/s43246-024-00578-1","DOIUrl":null,"url":null,"abstract":"Introducing a coating layer at an active material /solid electrolyte interface is crucial for ensuring thermodynamic stability of the solid electrolyte at interfaces in solid-state batteries. To thermodynamically protect the solid electrolyte, coating layers must maintain lithium chemical potential (μLi) at coating layer/solid electrolyte interfaces within the electrochemical window of the solid electrolyte. However, a general coating layer design principle to achieve this remains unestablished. Here we theoretically elucidate the µLi distribution across the solid electrolyte and coating layer, examining requirements for thermodynamic protection. We show that the protective capability of coating layers is not solely determined by their intrinsic characteristics, but also by the µLi distribution within the solid electrolyte and coating layer. We propose a quantitative approach based on µLi distribution to determine the required characteristics and geometries of coating layers that ensure the thermodynamic stability of the solid electrolyte while minimizing ohmic resistance, providing insights for coating layer design. Coating layers are crucial for solid-state battery stability. Here, we investigated the lithium chemical potential distribution in the solid electrolyte and coating layer and propose a method to determine optimal coating layer properties, ensuring electrolyte stability while minimizing resistance.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00578-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Coating layer design principles considering lithium chemical potential distribution within solid electrolytes of solid-state batteries\",\"authors\":\"Yuta Kimura, Takaya Fujisaki, Tetsuya Shimizu, Takashi Nakamura, Yasutoshi Iriyama, Koji Amezawa\",\"doi\":\"10.1038/s43246-024-00578-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introducing a coating layer at an active material /solid electrolyte interface is crucial for ensuring thermodynamic stability of the solid electrolyte at interfaces in solid-state batteries. To thermodynamically protect the solid electrolyte, coating layers must maintain lithium chemical potential (μLi) at coating layer/solid electrolyte interfaces within the electrochemical window of the solid electrolyte. However, a general coating layer design principle to achieve this remains unestablished. Here we theoretically elucidate the µLi distribution across the solid electrolyte and coating layer, examining requirements for thermodynamic protection. We show that the protective capability of coating layers is not solely determined by their intrinsic characteristics, but also by the µLi distribution within the solid electrolyte and coating layer. We propose a quantitative approach based on µLi distribution to determine the required characteristics and geometries of coating layers that ensure the thermodynamic stability of the solid electrolyte while minimizing ohmic resistance, providing insights for coating layer design. Coating layers are crucial for solid-state battery stability. Here, we investigated the lithium chemical potential distribution in the solid electrolyte and coating layer and propose a method to determine optimal coating layer properties, ensuring electrolyte stability while minimizing resistance.\",\"PeriodicalId\":10589,\"journal\":{\"name\":\"Communications Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43246-024-00578-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43246-024-00578-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00578-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在活性材料/固体电解质界面上引入涂层对于确保固体电解质在固态电池界面上的热力学稳定性至关重要。为了在热力学上保护固体电解质,镀膜层必须保持镀膜层/固体电解质界面处的锂化学势(μLi)在固体电解质的电化学窗口内。然而,实现这一目标的一般镀膜层设计原则仍未确立。在此,我们从理论上阐明了 µLi 在固体电解质和镀膜层之间的分布,并研究了热力学保护的要求。我们表明,镀膜层的保护能力不仅取决于其固有特性,还取决于 µLi 在固体电解质和镀膜层内的分布。我们提出了一种基于 µLi 分布的定量方法,以确定镀膜层所需的特性和几何形状,从而确保固体电解质的热力学稳定性,同时将欧姆电阻降至最低,为镀膜层的设计提供启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Coating layer design principles considering lithium chemical potential distribution within solid electrolytes of solid-state batteries
Introducing a coating layer at an active material /solid electrolyte interface is crucial for ensuring thermodynamic stability of the solid electrolyte at interfaces in solid-state batteries. To thermodynamically protect the solid electrolyte, coating layers must maintain lithium chemical potential (μLi) at coating layer/solid electrolyte interfaces within the electrochemical window of the solid electrolyte. However, a general coating layer design principle to achieve this remains unestablished. Here we theoretically elucidate the µLi distribution across the solid electrolyte and coating layer, examining requirements for thermodynamic protection. We show that the protective capability of coating layers is not solely determined by their intrinsic characteristics, but also by the µLi distribution within the solid electrolyte and coating layer. We propose a quantitative approach based on µLi distribution to determine the required characteristics and geometries of coating layers that ensure the thermodynamic stability of the solid electrolyte while minimizing ohmic resistance, providing insights for coating layer design. Coating layers are crucial for solid-state battery stability. Here, we investigated the lithium chemical potential distribution in the solid electrolyte and coating layer and propose a method to determine optimal coating layer properties, ensuring electrolyte stability while minimizing resistance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
期刊最新文献
Thermodynamic evidence for polaron stabilization inside the antiferromagnetic order of Eu5In2Sb6 Benefits and complexity of defects in metal-organic frameworks Multi-sensing yarns for continuous wireless sweat lactate monitoring Unexpected band structure changes within the higher-temperature antiferromagnetic state of CeBi Bioengineering approach for the design of magnetic bacterial cellulose membranes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1