{"title":"通过局部配位操作增强单原子纳米铜酶的抗辐射能力和过氧化物酶样活性。","authors":"Jiabin Wu, Xianyu Zhu, Qun Li, Qiang Fu, Bingxue Wang, Beibei Li, Shanshan Wang, Qingchao Chang, Huandong Xiang, Chengliang Ye, Qiqiang Li, Liang Huang, Yan Liang, Dingsheng Wang, Yuliang Zhao, Yadong Li","doi":"10.1038/s41467-024-50416-8","DOIUrl":null,"url":null,"abstract":"<p><p>The inactivation of natural enzymes by radiation poses a great challenge to their applications for radiotherapy. Single-atom nanozymes (SAzymes) with high structural stability under such extreme conditions become a promising candidate for replacing natural enzymes to shrink tumors. Here, we report a CuN<sub>3</sub>-centered SAzyme (CuN<sub>3</sub>-SAzyme) that exhibits higher peroxidase-like catalytic activity than a CuN<sub>4</sub>-centered counterpart, by locally regulating the coordination environment of single copper sites. Density functional theory calculations reveal that the CuN<sub>3</sub> active moiety confers optimal H<sub>2</sub>O<sub>2</sub> adsorption and dissociation properties, thus contributing to high enzymatic activity of CuN<sub>3</sub>-SAzyme. The introduction of X-ray can improve the kinetics of the decomposition of H<sub>2</sub>O<sub>2</sub> by CuN<sub>3</sub>-SAzyme. Moreover, CuN<sub>3</sub>-SAzyme is very stable after a total radiation dose of 500 Gy, without significant changes in its geometrical structure or coordination environment, and simultaneously still retains comparable peroxidase-like activity relative to natural enzymes. Finally, this developed CuN<sub>3</sub>-SAzyme with remarkable radioresistance can be used as an external field-improved therapeutics for enhancing radio-enzymatic therapy in vitro and in vivo. Overall, this study provides a paradigm for developing SAzymes with improved enzymatic activity through local coordination manipulation and high radioresistance over natural enzymes, for example, as sensitizers for cancer therapy.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":"6174"},"PeriodicalIF":14.7000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11263674/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing radiation-resistance and peroxidase-like activity of single-atom copper nanozyme via local coordination manipulation.\",\"authors\":\"Jiabin Wu, Xianyu Zhu, Qun Li, Qiang Fu, Bingxue Wang, Beibei Li, Shanshan Wang, Qingchao Chang, Huandong Xiang, Chengliang Ye, Qiqiang Li, Liang Huang, Yan Liang, Dingsheng Wang, Yuliang Zhao, Yadong Li\",\"doi\":\"10.1038/s41467-024-50416-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The inactivation of natural enzymes by radiation poses a great challenge to their applications for radiotherapy. Single-atom nanozymes (SAzymes) with high structural stability under such extreme conditions become a promising candidate for replacing natural enzymes to shrink tumors. Here, we report a CuN<sub>3</sub>-centered SAzyme (CuN<sub>3</sub>-SAzyme) that exhibits higher peroxidase-like catalytic activity than a CuN<sub>4</sub>-centered counterpart, by locally regulating the coordination environment of single copper sites. Density functional theory calculations reveal that the CuN<sub>3</sub> active moiety confers optimal H<sub>2</sub>O<sub>2</sub> adsorption and dissociation properties, thus contributing to high enzymatic activity of CuN<sub>3</sub>-SAzyme. The introduction of X-ray can improve the kinetics of the decomposition of H<sub>2</sub>O<sub>2</sub> by CuN<sub>3</sub>-SAzyme. Moreover, CuN<sub>3</sub>-SAzyme is very stable after a total radiation dose of 500 Gy, without significant changes in its geometrical structure or coordination environment, and simultaneously still retains comparable peroxidase-like activity relative to natural enzymes. Finally, this developed CuN<sub>3</sub>-SAzyme with remarkable radioresistance can be used as an external field-improved therapeutics for enhancing radio-enzymatic therapy in vitro and in vivo. Overall, this study provides a paradigm for developing SAzymes with improved enzymatic activity through local coordination manipulation and high radioresistance over natural enzymes, for example, as sensitizers for cancer therapy.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"15 1\",\"pages\":\"6174\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11263674/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-50416-8\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-50416-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Enhancing radiation-resistance and peroxidase-like activity of single-atom copper nanozyme via local coordination manipulation.
The inactivation of natural enzymes by radiation poses a great challenge to their applications for radiotherapy. Single-atom nanozymes (SAzymes) with high structural stability under such extreme conditions become a promising candidate for replacing natural enzymes to shrink tumors. Here, we report a CuN3-centered SAzyme (CuN3-SAzyme) that exhibits higher peroxidase-like catalytic activity than a CuN4-centered counterpart, by locally regulating the coordination environment of single copper sites. Density functional theory calculations reveal that the CuN3 active moiety confers optimal H2O2 adsorption and dissociation properties, thus contributing to high enzymatic activity of CuN3-SAzyme. The introduction of X-ray can improve the kinetics of the decomposition of H2O2 by CuN3-SAzyme. Moreover, CuN3-SAzyme is very stable after a total radiation dose of 500 Gy, without significant changes in its geometrical structure or coordination environment, and simultaneously still retains comparable peroxidase-like activity relative to natural enzymes. Finally, this developed CuN3-SAzyme with remarkable radioresistance can be used as an external field-improved therapeutics for enhancing radio-enzymatic therapy in vitro and in vivo. Overall, this study provides a paradigm for developing SAzymes with improved enzymatic activity through local coordination manipulation and high radioresistance over natural enzymes, for example, as sensitizers for cancer therapy.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.