HTR3A 通过 FOXH1/Wnt3A 信号通路促进非小细胞肺癌的发生

IF 2.1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemical Genetics Pub Date : 2024-07-24 DOI:10.1007/s10528-024-10872-9
Zeqin Wu, Jiufei Li, Minglian Zhong, Zhiyuan Xu, Mulan Yang, Chenyang Xu
{"title":"HTR3A 通过 FOXH1/Wnt3A 信号通路促进非小细胞肺癌的发生","authors":"Zeqin Wu, Jiufei Li, Minglian Zhong, Zhiyuan Xu, Mulan Yang, Chenyang Xu","doi":"10.1007/s10528-024-10872-9","DOIUrl":null,"url":null,"abstract":"<p><p>5-Hydroxytryptamine receptors (5-HTRs) are strongly correlated with tumor progression in various types of cancer. Despite this, the underlying mechanisms responsible for the role of 5-HTRs in non-small cell lung cancer (NSCLC) remains unclear. This study aimed to investigate the relationship between 5-hydroxytryptamine receptor 3A (HTR3A) and NSCLC development. Our findings indicated a higher distribution of HTR3A expression in NSCLC tissues when compared with normal tissues, where patients with high HTR3A levels demonstrated shorter overall survival times. In vitro analyses revealed that overexpression of HTR3A facilitated the proliferation and migration of NSCLC cell lines (A549 and NCI-H3255). Similarly, a notable acceleration of tumor growth and enhanced pulmonary tumorigenic potential were observed in HTR3A-overexpressing tumor-bearing mice. Mechanistically, upregulation of Forkhead Box H1 (FOXH1) by HTR3A led to the activation of Wnt3A/β-catenin signaling pathways, thereby promoting the development of NSCLC. Our report thus highlights the significance of the HTR3A/FOXH1 axis during tumor progression in NSCLC, proposing HTR3A as a possible diagnostic indicator and candidate target for clinical therapy.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HTR3A Promotes Non-small Cell Lung Cancer Through the FOXH1/Wnt3A Signaling Pathway.\",\"authors\":\"Zeqin Wu, Jiufei Li, Minglian Zhong, Zhiyuan Xu, Mulan Yang, Chenyang Xu\",\"doi\":\"10.1007/s10528-024-10872-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>5-Hydroxytryptamine receptors (5-HTRs) are strongly correlated with tumor progression in various types of cancer. Despite this, the underlying mechanisms responsible for the role of 5-HTRs in non-small cell lung cancer (NSCLC) remains unclear. This study aimed to investigate the relationship between 5-hydroxytryptamine receptor 3A (HTR3A) and NSCLC development. Our findings indicated a higher distribution of HTR3A expression in NSCLC tissues when compared with normal tissues, where patients with high HTR3A levels demonstrated shorter overall survival times. In vitro analyses revealed that overexpression of HTR3A facilitated the proliferation and migration of NSCLC cell lines (A549 and NCI-H3255). Similarly, a notable acceleration of tumor growth and enhanced pulmonary tumorigenic potential were observed in HTR3A-overexpressing tumor-bearing mice. Mechanistically, upregulation of Forkhead Box H1 (FOXH1) by HTR3A led to the activation of Wnt3A/β-catenin signaling pathways, thereby promoting the development of NSCLC. Our report thus highlights the significance of the HTR3A/FOXH1 axis during tumor progression in NSCLC, proposing HTR3A as a possible diagnostic indicator and candidate target for clinical therapy.</p>\",\"PeriodicalId\":482,\"journal\":{\"name\":\"Biochemical Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10528-024-10872-9\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-024-10872-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

5-羟色胺受体(5-HTR)与各种癌症的肿瘤进展密切相关。尽管如此,5-HTRs 在非小细胞肺癌(NSCLC)中发挥作用的潜在机制仍不清楚。本研究旨在探讨5-羟色胺受体3A(HTR3A)与非小细胞肺癌发展之间的关系。我们的研究结果表明,与正常组织相比,HTR3A在NSCLC组织中的表达分布较高,HTR3A水平高的患者总生存时间较短。体外分析表明,HTR3A 的过表达促进了 NSCLC 细胞系(A549 和 NCI-H3255)的增殖和迁移。同样,在过表达 HTR3A 的肿瘤小鼠中也观察到肿瘤生长明显加速,肺部致瘤潜力增强。从机理上讲,HTR3A上调叉头盒H1(FOXH1)导致Wnt3A/β-catenin信号通路的激活,从而促进了NSCLC的发展。因此,我们的报告强调了HTR3A/FOXH1轴在NSCLC肿瘤进展过程中的重要性,并提出HTR3A可能是诊断指标和临床治疗的候选靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HTR3A Promotes Non-small Cell Lung Cancer Through the FOXH1/Wnt3A Signaling Pathway.

5-Hydroxytryptamine receptors (5-HTRs) are strongly correlated with tumor progression in various types of cancer. Despite this, the underlying mechanisms responsible for the role of 5-HTRs in non-small cell lung cancer (NSCLC) remains unclear. This study aimed to investigate the relationship between 5-hydroxytryptamine receptor 3A (HTR3A) and NSCLC development. Our findings indicated a higher distribution of HTR3A expression in NSCLC tissues when compared with normal tissues, where patients with high HTR3A levels demonstrated shorter overall survival times. In vitro analyses revealed that overexpression of HTR3A facilitated the proliferation and migration of NSCLC cell lines (A549 and NCI-H3255). Similarly, a notable acceleration of tumor growth and enhanced pulmonary tumorigenic potential were observed in HTR3A-overexpressing tumor-bearing mice. Mechanistically, upregulation of Forkhead Box H1 (FOXH1) by HTR3A led to the activation of Wnt3A/β-catenin signaling pathways, thereby promoting the development of NSCLC. Our report thus highlights the significance of the HTR3A/FOXH1 axis during tumor progression in NSCLC, proposing HTR3A as a possible diagnostic indicator and candidate target for clinical therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemical Genetics
Biochemical Genetics 生物-生化与分子生物学
CiteScore
3.90
自引率
0.00%
发文量
133
审稿时长
4.8 months
期刊介绍: Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses. Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication. Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses. Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods. Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.
期刊最新文献
Association of MnSOD, CAT, and GPx1 Gene Polymorphism with Risk of Diabetic Nephropathy in South Indian Patients: A Case–Control Study Evaluating the Serum Level of ACTH and Investigating the Expression of miR-26a, miR-34a, miR-155-5p, and miR-146a in the Peripheral Blood Cells of Multiple Sclerosis Patients. Exploration of Genetic Variation and Population Structure in Bergenia ciliata for its Conservation Implications. Therapeutic Potential of PLK1, KIF4A, CDCA5, UBE2C, CDT1, SKA3, AURKB, and PTTG1 Genes in Triple-Negative Breast Cancer: Correlating Their Expression with Sensitivity to GSK 461364 and IKK 16 Drugs. Unveiling EFNB2 as a Key Player in Sorafenib Resistance: Insights from Bioinformatics Analysis and Functional Validation in Hepatocellular Carcinoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1