Christoph Kiefer, Marcella L Woud, Simon E Blackwell, Axel Mayer
{"title":"随机协变量对二元结果的平均治疗效果。","authors":"Christoph Kiefer, Marcella L Woud, Simon E Blackwell, Axel Mayer","doi":"10.1111/bmsp.12355","DOIUrl":null,"url":null,"abstract":"<p><p>When evaluating the effect of psychological treatments on a dichotomous outcome variable in a randomized controlled trial (RCT), covariate adjustment using logistic regression models is often applied. In the presence of covariates, average marginal effects (AMEs) are often preferred over odds ratios, as AMEs yield a clearer substantive and causal interpretation. However, standard error computation of AMEs neglects sampling-based uncertainty (i.e., covariate values are assumed to be fixed over repeated sampling), which leads to underestimation of AME standard errors in other generalized linear models (e.g., Poisson regression). In this paper, we present and compare approaches allowing for stochastic (i.e., randomly sampled) covariates in models for binary outcomes. In a simulation study, we investigated the quality of the AME and stochastic-covariate approaches focusing on statistical inference in finite samples. Our results indicate that the fixed-covariate approach provides reliable results only if there is no heterogeneity in interindividual treatment effects (i.e., presence of treatment-covariate interactions), while the stochastic-covariate approaches are preferable in all other simulated conditions. We provide an illustrative example from clinical psychology investigating the effect of a cognitive bias modification training on post-traumatic stress disorder while accounting for patients' anxiety using an RCT.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Average treatment effects on binary outcomes with stochastic covariates.\",\"authors\":\"Christoph Kiefer, Marcella L Woud, Simon E Blackwell, Axel Mayer\",\"doi\":\"10.1111/bmsp.12355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>When evaluating the effect of psychological treatments on a dichotomous outcome variable in a randomized controlled trial (RCT), covariate adjustment using logistic regression models is often applied. In the presence of covariates, average marginal effects (AMEs) are often preferred over odds ratios, as AMEs yield a clearer substantive and causal interpretation. However, standard error computation of AMEs neglects sampling-based uncertainty (i.e., covariate values are assumed to be fixed over repeated sampling), which leads to underestimation of AME standard errors in other generalized linear models (e.g., Poisson regression). In this paper, we present and compare approaches allowing for stochastic (i.e., randomly sampled) covariates in models for binary outcomes. In a simulation study, we investigated the quality of the AME and stochastic-covariate approaches focusing on statistical inference in finite samples. Our results indicate that the fixed-covariate approach provides reliable results only if there is no heterogeneity in interindividual treatment effects (i.e., presence of treatment-covariate interactions), while the stochastic-covariate approaches are preferable in all other simulated conditions. We provide an illustrative example from clinical psychology investigating the effect of a cognitive bias modification training on post-traumatic stress disorder while accounting for patients' anxiety using an RCT.</p>\",\"PeriodicalId\":55322,\"journal\":{\"name\":\"British Journal of Mathematical & Statistical Psychology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Mathematical & Statistical Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1111/bmsp.12355\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bmsp.12355","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Average treatment effects on binary outcomes with stochastic covariates.
When evaluating the effect of psychological treatments on a dichotomous outcome variable in a randomized controlled trial (RCT), covariate adjustment using logistic regression models is often applied. In the presence of covariates, average marginal effects (AMEs) are often preferred over odds ratios, as AMEs yield a clearer substantive and causal interpretation. However, standard error computation of AMEs neglects sampling-based uncertainty (i.e., covariate values are assumed to be fixed over repeated sampling), which leads to underestimation of AME standard errors in other generalized linear models (e.g., Poisson regression). In this paper, we present and compare approaches allowing for stochastic (i.e., randomly sampled) covariates in models for binary outcomes. In a simulation study, we investigated the quality of the AME and stochastic-covariate approaches focusing on statistical inference in finite samples. Our results indicate that the fixed-covariate approach provides reliable results only if there is no heterogeneity in interindividual treatment effects (i.e., presence of treatment-covariate interactions), while the stochastic-covariate approaches are preferable in all other simulated conditions. We provide an illustrative example from clinical psychology investigating the effect of a cognitive bias modification training on post-traumatic stress disorder while accounting for patients' anxiety using an RCT.
期刊介绍:
The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including:
• mathematical psychology
• statistics
• psychometrics
• decision making
• psychophysics
• classification
• relevant areas of mathematics, computing and computer software
These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.