通过部署可膨胀微球实现高精度 3D 打印

IF 7.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Cell Reports Physical Science Pub Date : 2024-07-22 DOI:10.1016/j.xcrp.2024.102113
{"title":"通过部署可膨胀微球实现高精度 3D 打印","authors":"","doi":"10.1016/j.xcrp.2024.102113","DOIUrl":null,"url":null,"abstract":"<p>Stereolithography-based three-dimensional (3D) printing technology is widely employed in various industries, including manufacturing, healthcare, energy, biomedical, art, and other fields. However, precision issues, such as dimensional shrinkage and structural warping, significantly hinder its wide application. In this study, we present a straightforward and efficient yet general strategy to enhance structural fidelity by incorporating thermally expandable microspheres into photosensitive resins. We found that this reduction substantially mitigates the volume shrinkage below 3.98% compared to over 10% for commercial photosensitive resins. Precision improves significantly, with dimensional deviation at just 0.035% compared to over 0.1% with commercial options. Furthermore, due to the low filling ratio, the improvement in 3D printing precision did not affect the mechanical properties; thus, it does not affect applications where those photosensitive resins are originally targeted. Our method represents an effective strategy to improve the 3D printing resolution of photosensitive resins, thus opening directions for high-precision 3D printing technology.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-precision 3D printing by deploying expandable microspheres\",\"authors\":\"\",\"doi\":\"10.1016/j.xcrp.2024.102113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Stereolithography-based three-dimensional (3D) printing technology is widely employed in various industries, including manufacturing, healthcare, energy, biomedical, art, and other fields. However, precision issues, such as dimensional shrinkage and structural warping, significantly hinder its wide application. In this study, we present a straightforward and efficient yet general strategy to enhance structural fidelity by incorporating thermally expandable microspheres into photosensitive resins. We found that this reduction substantially mitigates the volume shrinkage below 3.98% compared to over 10% for commercial photosensitive resins. Precision improves significantly, with dimensional deviation at just 0.035% compared to over 0.1% with commercial options. Furthermore, due to the low filling ratio, the improvement in 3D printing precision did not affect the mechanical properties; thus, it does not affect applications where those photosensitive resins are originally targeted. Our method represents an effective strategy to improve the 3D printing resolution of photosensitive resins, thus opening directions for high-precision 3D printing technology.</p>\",\"PeriodicalId\":9703,\"journal\":{\"name\":\"Cell Reports Physical Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Physical Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrp.2024.102113\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2024.102113","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于立体光刻技术的三维(3D)打印技术被广泛应用于各行各业,包括制造业、医疗保健、能源、生物医学、艺术和其他领域。然而,尺寸收缩和结构翘曲等精度问题严重阻碍了该技术的广泛应用。在本研究中,我们提出了一种简单、高效而又通用的策略,通过在光敏树脂中加入热膨胀微球来提高结构的保真度。我们发现,与商用光敏树脂超过 10% 的体积收缩率相比,这种减少体积收缩率的方法大大降低了体积收缩率,使其低于 3.98%。精度大幅提高,尺寸偏差仅为 0.035%,而商用树脂的尺寸偏差则超过 0.1%。此外,由于填充率低,三维打印精度的提高不会影响机械性能;因此,它不会影响这些光敏树脂最初的目标应用。我们的方法是提高光敏树脂三维打印分辨率的有效策略,从而为高精度三维打印技术开辟了方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-precision 3D printing by deploying expandable microspheres

Stereolithography-based three-dimensional (3D) printing technology is widely employed in various industries, including manufacturing, healthcare, energy, biomedical, art, and other fields. However, precision issues, such as dimensional shrinkage and structural warping, significantly hinder its wide application. In this study, we present a straightforward and efficient yet general strategy to enhance structural fidelity by incorporating thermally expandable microspheres into photosensitive resins. We found that this reduction substantially mitigates the volume shrinkage below 3.98% compared to over 10% for commercial photosensitive resins. Precision improves significantly, with dimensional deviation at just 0.035% compared to over 0.1% with commercial options. Furthermore, due to the low filling ratio, the improvement in 3D printing precision did not affect the mechanical properties; thus, it does not affect applications where those photosensitive resins are originally targeted. Our method represents an effective strategy to improve the 3D printing resolution of photosensitive resins, thus opening directions for high-precision 3D printing technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Physical Science
Cell Reports Physical Science Energy-Energy (all)
CiteScore
11.40
自引率
2.20%
发文量
388
审稿时长
62 days
期刊介绍: Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.
期刊最新文献
Paper microfluidic sentinel sensors enable rapid and on-site wastewater surveillance in community settings Catalyzing deep decarbonization with federated battery diagnosis and prognosis for better data management in energy storage systems 4.8-V all-solid-state garnet-based lithium-metal batteries with stable interface Deformation of collagen-based tissues investigated using a systematic review and meta-analysis of synchrotron x-ray scattering studies Catalysis for plastic deconstruction and upcycling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1