Yumei Wang, Zhongting Wang, Xiaoyu Xu, Sam Jin An Oh, Jianguo Sun, Feng Zheng, Xiao Lu, Chaohe Xu, Binggong Yan, Guangsheng Huang, Li Lu
{"title":"全固态铁电工程复合电解质带来的超稳定钠离子电池","authors":"Yumei Wang, Zhongting Wang, Xiaoyu Xu, Sam Jin An Oh, Jianguo Sun, Feng Zheng, Xiao Lu, Chaohe Xu, Binggong Yan, Guangsheng Huang, Li Lu","doi":"10.1007/s40820-024-01474-6","DOIUrl":null,"url":null,"abstract":"<div><h2>Highlights</h2><div>\n \n \n<ul>\n <li>\n <p>The capacity fading mechanism of the conventional Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>//Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> (NVP//NVP) cell has been investigated.</p>\n </li>\n <li>\n <p>All-solid-state ferroelectric-engineered composite electrolyte could improve the electrolyte–electrode interfacial stability as well as the interfacial ion conduction of the Na-ion battery using the NVP anode.</p>\n </li>\n <li>\n <p>Outstanding cyclic stability has been achieved in the all-solid-state Na-ion battery using the NVP anode, with a capacity fading rate as low as 0.005% per cycle.</p>\n </li>\n </ul>\n </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"16 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-024-01474-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Ultra-Stable Sodium-Ion Battery Enabled by All-Solid-State Ferroelectric-Engineered Composite Electrolytes\",\"authors\":\"Yumei Wang, Zhongting Wang, Xiaoyu Xu, Sam Jin An Oh, Jianguo Sun, Feng Zheng, Xiao Lu, Chaohe Xu, Binggong Yan, Guangsheng Huang, Li Lu\",\"doi\":\"10.1007/s40820-024-01474-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h2>Highlights</h2><div>\\n \\n \\n<ul>\\n <li>\\n <p>The capacity fading mechanism of the conventional Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>//Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> (NVP//NVP) cell has been investigated.</p>\\n </li>\\n <li>\\n <p>All-solid-state ferroelectric-engineered composite electrolyte could improve the electrolyte–electrode interfacial stability as well as the interfacial ion conduction of the Na-ion battery using the NVP anode.</p>\\n </li>\\n <li>\\n <p>Outstanding cyclic stability has been achieved in the all-solid-state Na-ion battery using the NVP anode, with a capacity fading rate as low as 0.005% per cycle.</p>\\n </li>\\n </ul>\\n </div></div>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":26.6000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40820-024-01474-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-024-01474-6\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-024-01474-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Ultra-Stable Sodium-Ion Battery Enabled by All-Solid-State Ferroelectric-Engineered Composite Electrolytes
Highlights
The capacity fading mechanism of the conventional Na3V2(PO4)3//Na3V2(PO4)3 (NVP//NVP) cell has been investigated.
All-solid-state ferroelectric-engineered composite electrolyte could improve the electrolyte–electrode interfacial stability as well as the interfacial ion conduction of the Na-ion battery using the NVP anode.
Outstanding cyclic stability has been achieved in the all-solid-state Na-ion battery using the NVP anode, with a capacity fading rate as low as 0.005% per cycle.
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand.
Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields.
Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.