利用 R2 推断两个性状之间的因果方向,并将其应用于全转录组关联研究。

IF 8.1 1区 生物学 Q1 GENETICS & HEREDITY American journal of human genetics Pub Date : 2024-08-08 Epub Date: 2024-07-24 DOI:10.1016/j.ajhg.2024.06.013
Huiling Liao, Haoran Xue, Wei Pan
{"title":"利用 R2 推断两个性状之间的因果方向,并将其应用于全转录组关联研究。","authors":"Huiling Liao, Haoran Xue, Wei Pan","doi":"10.1016/j.ajhg.2024.06.013","DOIUrl":null,"url":null,"abstract":"<p><p>In Mendelian randomization, two single SNP-trait correlation-based methods have been developed to infer the causal direction between an exposure (e.g., a gene) and an outcome (e.g., a trait), called MR Steiger's method and its recent extension called Causal Direction-Ratio (CD-Ratio). Here we propose an approach based on R<sup>2</sup>, the coefficient of determination, to combine information from multiple (possibly correlated) SNPs to simultaneously infer the presence and direction of a causal relationship between an exposure and an outcome. Our proposed method generalizes Steiger's method from using a single SNP to multiple SNPs as IVs. It is especially useful in transcriptome-wide association studies (TWASs) (and similar applications) with typically small sample sizes for gene expression (or another molecular trait) data, providing a more flexible and powerful approach to inferring causal directions. It can be applied to GWAS summary data with a reference panel. We also discuss the influence of invalid IVs and introduce a new approach called R2S to select and remove invalid IVs (if any) to enhance the robustness. We compared the performance of the proposed method with existing methods in simulations to demonstrate its advantages. We applied the methods to identify causal genes for high/low-density lipoprotein cholesterol (HDL/LDL) using the individual-level GTEx gene expression data and UK Biobank GWAS data. The proposed method was able to confirm some well-known causal genes while identifying some novel ones. Additionally, we illustrated an application of the proposed method to GWAS summary to infer causal relationships between HDL/LDL and stroke/coronary artery disease (CAD).</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":"1782-1795"},"PeriodicalIF":8.1000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339628/pdf/","citationCount":"0","resultStr":"{\"title\":\"Inferring causal direction between two traits using R<sup>2</sup> with application to transcriptome-wide association studies.\",\"authors\":\"Huiling Liao, Haoran Xue, Wei Pan\",\"doi\":\"10.1016/j.ajhg.2024.06.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In Mendelian randomization, two single SNP-trait correlation-based methods have been developed to infer the causal direction between an exposure (e.g., a gene) and an outcome (e.g., a trait), called MR Steiger's method and its recent extension called Causal Direction-Ratio (CD-Ratio). Here we propose an approach based on R<sup>2</sup>, the coefficient of determination, to combine information from multiple (possibly correlated) SNPs to simultaneously infer the presence and direction of a causal relationship between an exposure and an outcome. Our proposed method generalizes Steiger's method from using a single SNP to multiple SNPs as IVs. It is especially useful in transcriptome-wide association studies (TWASs) (and similar applications) with typically small sample sizes for gene expression (or another molecular trait) data, providing a more flexible and powerful approach to inferring causal directions. It can be applied to GWAS summary data with a reference panel. We also discuss the influence of invalid IVs and introduce a new approach called R2S to select and remove invalid IVs (if any) to enhance the robustness. We compared the performance of the proposed method with existing methods in simulations to demonstrate its advantages. We applied the methods to identify causal genes for high/low-density lipoprotein cholesterol (HDL/LDL) using the individual-level GTEx gene expression data and UK Biobank GWAS data. The proposed method was able to confirm some well-known causal genes while identifying some novel ones. Additionally, we illustrated an application of the proposed method to GWAS summary to infer causal relationships between HDL/LDL and stroke/coronary artery disease (CAD).</p>\",\"PeriodicalId\":7659,\"journal\":{\"name\":\"American journal of human genetics\",\"volume\":\" \",\"pages\":\"1782-1795\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339628/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of human genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ajhg.2024.06.013\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ajhg.2024.06.013","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

在孟德尔随机化中,有两种基于单 SNP-性状相关性的方法可用于推断暴露(如基因)与结果(如性状)之间的因果方向,分别称为 MR Steiger 方法和最近扩展的因果方向比(CD-Ratio)方法。在此,我们提出一种基于 R2(决定系数)的方法,将多个 SNPs(可能相关)的信息结合起来,同时推断暴露与结果之间是否存在因果关系以及因果关系的方向。我们提出的方法将 Steiger 的方法从使用单个 SNP 推广到多个 SNP 作为 IV。它特别适用于基因表达(或其他分子性状)数据样本量通常较小的转录组范围关联研究(TWAS)(及类似应用),为推断因果方向提供了一种更灵活、更强大的方法。它可以应用于具有参考面板的 GWAS 摘要数据。我们还讨论了无效 IV 的影响,并引入了一种称为 R2S 的新方法来选择和移除无效 IV(如果有的话),以增强稳健性。我们通过模拟比较了拟议方法与现有方法的性能,以证明其优势。我们利用个体水平的 GTEx 基因表达数据和英国生物库 GWAS 数据,将这些方法用于识别高/低密度脂蛋白胆固醇(HDL/LDL)的因果基因。所提出的方法在确认了一些众所周知的因果基因的同时,还发现了一些新的基因。此外,我们还说明了所提方法在 GWAS 总结中的应用,以推断高密度脂蛋白/低密度脂蛋白与中风/冠状动脉疾病(CAD)之间的因果关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inferring causal direction between two traits using R2 with application to transcriptome-wide association studies.

In Mendelian randomization, two single SNP-trait correlation-based methods have been developed to infer the causal direction between an exposure (e.g., a gene) and an outcome (e.g., a trait), called MR Steiger's method and its recent extension called Causal Direction-Ratio (CD-Ratio). Here we propose an approach based on R2, the coefficient of determination, to combine information from multiple (possibly correlated) SNPs to simultaneously infer the presence and direction of a causal relationship between an exposure and an outcome. Our proposed method generalizes Steiger's method from using a single SNP to multiple SNPs as IVs. It is especially useful in transcriptome-wide association studies (TWASs) (and similar applications) with typically small sample sizes for gene expression (or another molecular trait) data, providing a more flexible and powerful approach to inferring causal directions. It can be applied to GWAS summary data with a reference panel. We also discuss the influence of invalid IVs and introduce a new approach called R2S to select and remove invalid IVs (if any) to enhance the robustness. We compared the performance of the proposed method with existing methods in simulations to demonstrate its advantages. We applied the methods to identify causal genes for high/low-density lipoprotein cholesterol (HDL/LDL) using the individual-level GTEx gene expression data and UK Biobank GWAS data. The proposed method was able to confirm some well-known causal genes while identifying some novel ones. Additionally, we illustrated an application of the proposed method to GWAS summary to infer causal relationships between HDL/LDL and stroke/coronary artery disease (CAD).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.70
自引率
4.10%
发文量
185
审稿时长
1 months
期刊介绍: The American Journal of Human Genetics (AJHG) is a monthly journal published by Cell Press, chosen by The American Society of Human Genetics (ASHG) as its premier publication starting from January 2008. AJHG represents Cell Press's first society-owned journal, and both ASHG and Cell Press anticipate significant synergies between AJHG content and that of other Cell Press titles.
期刊最新文献
Design and implementation of an action plan for justice, equity, diversity, and inclusion within the Clinical Genome Resource. Genomic and phenotypic correlates of mosaic loss of chromosome Y in blood. HiFi long-read genomes for difficult-to-detect, clinically relevant variants. Multivariate proteome-wide association study to identify causal proteins for Alzheimer disease. DNA-binding affinity and specificity determine the phenotypic diversity in BCL11B-related disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1