Jiwoon Lim, Sung Eun Hyun, Hayoung Kim, Ju Seok Ryu
{"title":"通过高分辨率测压法评估连续 4 通道神经肌肉电刺激的残余效应。","authors":"Jiwoon Lim, Sung Eun Hyun, Hayoung Kim, Ju Seok Ryu","doi":"10.1186/s12938-024-01269-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>High-resolution manometry (HRM) can quantify swallowing pathophysiology to evaluate the status of the pharynx. Sequential 4-channel neuromuscular electrical stimulation (NMES) was recently developed based on the normal contractile sequences of swallowing-related muscles. This study aimed to examine the effects of sequential 4-channel NMES for compensatory application during swallowing and to observe the residual effects after the application of NMES using HRM.</p><p><strong>Results: </strong>Sequential 4-channel NMES significantly improved the HRM parameters, with respect to the maximal pressure and area of the velopharynx (VP), maximal pressure and area of the mesopharynx (MP), and upper esophageal sphincter (UES) activation and nadir duration. Furthermore, the improvement in the pressure and area variables of the VP and MP showed a tendency to maintain even when measured after NMES, but there are no significant differences.</p><p><strong>Conclusions: </strong>The present study suggests that the sequential 4-channel NMES application of the suprahyoid and infrahyoid muscles during swallowing improves the pressure, area, and time variables of the oropharynx, as measured by HRM, and it is likely that the effects may persist even after stimulation. Trial Registration Clinicaltrials.gov, registration number: NCT02718963 (initial release: 03/20/2016, actual study completion date: 06/24/2016, last release: 10/20/2020).</p>","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":"23 1","pages":"70"},"PeriodicalIF":2.9000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11270850/pdf/","citationCount":"0","resultStr":"{\"title\":\"Residual effect of sequential 4-channel neuromuscular electrical stimulation evaluated by high-resolution manometry.\",\"authors\":\"Jiwoon Lim, Sung Eun Hyun, Hayoung Kim, Ju Seok Ryu\",\"doi\":\"10.1186/s12938-024-01269-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>High-resolution manometry (HRM) can quantify swallowing pathophysiology to evaluate the status of the pharynx. Sequential 4-channel neuromuscular electrical stimulation (NMES) was recently developed based on the normal contractile sequences of swallowing-related muscles. This study aimed to examine the effects of sequential 4-channel NMES for compensatory application during swallowing and to observe the residual effects after the application of NMES using HRM.</p><p><strong>Results: </strong>Sequential 4-channel NMES significantly improved the HRM parameters, with respect to the maximal pressure and area of the velopharynx (VP), maximal pressure and area of the mesopharynx (MP), and upper esophageal sphincter (UES) activation and nadir duration. Furthermore, the improvement in the pressure and area variables of the VP and MP showed a tendency to maintain even when measured after NMES, but there are no significant differences.</p><p><strong>Conclusions: </strong>The present study suggests that the sequential 4-channel NMES application of the suprahyoid and infrahyoid muscles during swallowing improves the pressure, area, and time variables of the oropharynx, as measured by HRM, and it is likely that the effects may persist even after stimulation. Trial Registration Clinicaltrials.gov, registration number: NCT02718963 (initial release: 03/20/2016, actual study completion date: 06/24/2016, last release: 10/20/2020).</p>\",\"PeriodicalId\":8927,\"journal\":{\"name\":\"BioMedical Engineering OnLine\",\"volume\":\"23 1\",\"pages\":\"70\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11270850/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioMedical Engineering OnLine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12938-024-01269-1\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMedical Engineering OnLine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12938-024-01269-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Residual effect of sequential 4-channel neuromuscular electrical stimulation evaluated by high-resolution manometry.
Background: High-resolution manometry (HRM) can quantify swallowing pathophysiology to evaluate the status of the pharynx. Sequential 4-channel neuromuscular electrical stimulation (NMES) was recently developed based on the normal contractile sequences of swallowing-related muscles. This study aimed to examine the effects of sequential 4-channel NMES for compensatory application during swallowing and to observe the residual effects after the application of NMES using HRM.
Results: Sequential 4-channel NMES significantly improved the HRM parameters, with respect to the maximal pressure and area of the velopharynx (VP), maximal pressure and area of the mesopharynx (MP), and upper esophageal sphincter (UES) activation and nadir duration. Furthermore, the improvement in the pressure and area variables of the VP and MP showed a tendency to maintain even when measured after NMES, but there are no significant differences.
Conclusions: The present study suggests that the sequential 4-channel NMES application of the suprahyoid and infrahyoid muscles during swallowing improves the pressure, area, and time variables of the oropharynx, as measured by HRM, and it is likely that the effects may persist even after stimulation. Trial Registration Clinicaltrials.gov, registration number: NCT02718963 (initial release: 03/20/2016, actual study completion date: 06/24/2016, last release: 10/20/2020).
期刊介绍:
BioMedical Engineering OnLine is an open access, peer-reviewed journal that is dedicated to publishing research in all areas of biomedical engineering.
BioMedical Engineering OnLine is aimed at readers and authors throughout the world, with an interest in using tools of the physical and data sciences and techniques in engineering to understand and solve problems in the biological and medical sciences. Topical areas include, but are not limited to:
Bioinformatics-
Bioinstrumentation-
Biomechanics-
Biomedical Devices & Instrumentation-
Biomedical Signal Processing-
Healthcare Information Systems-
Human Dynamics-
Neural Engineering-
Rehabilitation Engineering-
Biomaterials-
Biomedical Imaging & Image Processing-
BioMEMS and On-Chip Devices-
Bio-Micro/Nano Technologies-
Biomolecular Engineering-
Biosensors-
Cardiovascular Systems Engineering-
Cellular Engineering-
Clinical Engineering-
Computational Biology-
Drug Delivery Technologies-
Modeling Methodologies-
Nanomaterials and Nanotechnology in Biomedicine-
Respiratory Systems Engineering-
Robotics in Medicine-
Systems and Synthetic Biology-
Systems Biology-
Telemedicine/Smartphone Applications in Medicine-
Therapeutic Systems, Devices and Technologies-
Tissue Engineering