通过高分辨率测压法评估连续 4 通道神经肌肉电刺激的残余效应。

IF 2.9 4区 医学 Q3 ENGINEERING, BIOMEDICAL BioMedical Engineering OnLine Pub Date : 2024-07-25 DOI:10.1186/s12938-024-01269-1
Jiwoon Lim, Sung Eun Hyun, Hayoung Kim, Ju Seok Ryu
{"title":"通过高分辨率测压法评估连续 4 通道神经肌肉电刺激的残余效应。","authors":"Jiwoon Lim, Sung Eun Hyun, Hayoung Kim, Ju Seok Ryu","doi":"10.1186/s12938-024-01269-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>High-resolution manometry (HRM) can quantify swallowing pathophysiology to evaluate the status of the pharynx. Sequential 4-channel neuromuscular electrical stimulation (NMES) was recently developed based on the normal contractile sequences of swallowing-related muscles. This study aimed to examine the effects of sequential 4-channel NMES for compensatory application during swallowing and to observe the residual effects after the application of NMES using HRM.</p><p><strong>Results: </strong>Sequential 4-channel NMES significantly improved the HRM parameters, with respect to the maximal pressure and area of the velopharynx (VP), maximal pressure and area of the mesopharynx (MP), and upper esophageal sphincter (UES) activation and nadir duration. Furthermore, the improvement in the pressure and area variables of the VP and MP showed a tendency to maintain even when measured after NMES, but there are no significant differences.</p><p><strong>Conclusions: </strong>The present study suggests that the sequential 4-channel NMES application of the suprahyoid and infrahyoid muscles during swallowing improves the pressure, area, and time variables of the oropharynx, as measured by HRM, and it is likely that the effects may persist even after stimulation. Trial Registration Clinicaltrials.gov, registration number: NCT02718963 (initial release: 03/20/2016, actual study completion date: 06/24/2016, last release: 10/20/2020).</p>","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":"23 1","pages":"70"},"PeriodicalIF":2.9000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11270850/pdf/","citationCount":"0","resultStr":"{\"title\":\"Residual effect of sequential 4-channel neuromuscular electrical stimulation evaluated by high-resolution manometry.\",\"authors\":\"Jiwoon Lim, Sung Eun Hyun, Hayoung Kim, Ju Seok Ryu\",\"doi\":\"10.1186/s12938-024-01269-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>High-resolution manometry (HRM) can quantify swallowing pathophysiology to evaluate the status of the pharynx. Sequential 4-channel neuromuscular electrical stimulation (NMES) was recently developed based on the normal contractile sequences of swallowing-related muscles. This study aimed to examine the effects of sequential 4-channel NMES for compensatory application during swallowing and to observe the residual effects after the application of NMES using HRM.</p><p><strong>Results: </strong>Sequential 4-channel NMES significantly improved the HRM parameters, with respect to the maximal pressure and area of the velopharynx (VP), maximal pressure and area of the mesopharynx (MP), and upper esophageal sphincter (UES) activation and nadir duration. Furthermore, the improvement in the pressure and area variables of the VP and MP showed a tendency to maintain even when measured after NMES, but there are no significant differences.</p><p><strong>Conclusions: </strong>The present study suggests that the sequential 4-channel NMES application of the suprahyoid and infrahyoid muscles during swallowing improves the pressure, area, and time variables of the oropharynx, as measured by HRM, and it is likely that the effects may persist even after stimulation. Trial Registration Clinicaltrials.gov, registration number: NCT02718963 (initial release: 03/20/2016, actual study completion date: 06/24/2016, last release: 10/20/2020).</p>\",\"PeriodicalId\":8927,\"journal\":{\"name\":\"BioMedical Engineering OnLine\",\"volume\":\"23 1\",\"pages\":\"70\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11270850/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioMedical Engineering OnLine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12938-024-01269-1\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMedical Engineering OnLine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12938-024-01269-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:高分辨率测压(HRM)可量化吞咽病理生理学,以评估咽部状况。根据吞咽相关肌肉的正常收缩序列,最近开发出了顺序式 4 通道神经肌肉电刺激(NMES)。本研究旨在探讨在吞咽过程中补偿性应用顺序 4 通道 NMES 的效果,并使用 HRM 观察应用 NMES 后的残余效果:结果:连续 4 通道 NMES 能明显改善 HRM 参数,包括咽鼓管(VP)的最大压力和面积、咽中管(MP)的最大压力和面积、食管上括约肌(UES)的激活和最低点持续时间。此外,即使在 NMES 后测量,VP 和 MP 压力和面积变量的改善仍有保持的趋势,但没有显著差异:本研究表明,在吞咽过程中对舌骨上肌和舌骨下肌连续施加 4 通道 NMES 可改善口咽部的压力、面积和时间变量(由 HRM 测量),而且即使在刺激后,其效果仍有可能持续。试验注册 Clinicaltrials.gov,注册号:NCT02718963(首次发布:初始发布日期:2016 年 03 月 20 日,实际研究完成日期:2016 年 06 月 24 日,最后发布日期:2020 年 10 月 20 日):10/20/2020).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Residual effect of sequential 4-channel neuromuscular electrical stimulation evaluated by high-resolution manometry.

Background: High-resolution manometry (HRM) can quantify swallowing pathophysiology to evaluate the status of the pharynx. Sequential 4-channel neuromuscular electrical stimulation (NMES) was recently developed based on the normal contractile sequences of swallowing-related muscles. This study aimed to examine the effects of sequential 4-channel NMES for compensatory application during swallowing and to observe the residual effects after the application of NMES using HRM.

Results: Sequential 4-channel NMES significantly improved the HRM parameters, with respect to the maximal pressure and area of the velopharynx (VP), maximal pressure and area of the mesopharynx (MP), and upper esophageal sphincter (UES) activation and nadir duration. Furthermore, the improvement in the pressure and area variables of the VP and MP showed a tendency to maintain even when measured after NMES, but there are no significant differences.

Conclusions: The present study suggests that the sequential 4-channel NMES application of the suprahyoid and infrahyoid muscles during swallowing improves the pressure, area, and time variables of the oropharynx, as measured by HRM, and it is likely that the effects may persist even after stimulation. Trial Registration Clinicaltrials.gov, registration number: NCT02718963 (initial release: 03/20/2016, actual study completion date: 06/24/2016, last release: 10/20/2020).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BioMedical Engineering OnLine
BioMedical Engineering OnLine 工程技术-工程:生物医学
CiteScore
6.70
自引率
2.60%
发文量
79
审稿时长
1 months
期刊介绍: BioMedical Engineering OnLine is an open access, peer-reviewed journal that is dedicated to publishing research in all areas of biomedical engineering. BioMedical Engineering OnLine is aimed at readers and authors throughout the world, with an interest in using tools of the physical and data sciences and techniques in engineering to understand and solve problems in the biological and medical sciences. Topical areas include, but are not limited to: Bioinformatics- Bioinstrumentation- Biomechanics- Biomedical Devices & Instrumentation- Biomedical Signal Processing- Healthcare Information Systems- Human Dynamics- Neural Engineering- Rehabilitation Engineering- Biomaterials- Biomedical Imaging & Image Processing- BioMEMS and On-Chip Devices- Bio-Micro/Nano Technologies- Biomolecular Engineering- Biosensors- Cardiovascular Systems Engineering- Cellular Engineering- Clinical Engineering- Computational Biology- Drug Delivery Technologies- Modeling Methodologies- Nanomaterials and Nanotechnology in Biomedicine- Respiratory Systems Engineering- Robotics in Medicine- Systems and Synthetic Biology- Systems Biology- Telemedicine/Smartphone Applications in Medicine- Therapeutic Systems, Devices and Technologies- Tissue Engineering
期刊最新文献
Application effect of enhanced recovery after surgery on patients with hepatolithiasis undergoing hepatectomy. Expression of periostin in the epithelium of cholesteatoma with different degrees of ossicular chain destruction and its clinical value in predicting postoperative hearing recovery. Transcatheter bicuspid venous valve prostheses: fluid mechanical performance testing of artificial nonwoven leaflets. Albumin nanoparticles are a promising drug delivery system in dentistry. Optimizing stent retrievers for mechanical enhancement and in vitro testing in acute ischemic stroke models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1