评估人类原代新生儿真皮成纤维细胞暴露于太阳模拟紫外线辐射后的恢复时间效应。

IF 1.4 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of lasers in medical sciences Pub Date : 2024-07-07 eCollection Date: 2024-01-01 DOI:10.34172/jlms.2024.20
Fatemeh Bandarian, Farideh Razi, Mostafa Rezaei-Tavirani, Babak Arjmand, Somayeh Jahani Sherafat, Mohammad Rostami Nejad
{"title":"评估人类原代新生儿真皮成纤维细胞暴露于太阳模拟紫外线辐射后的恢复时间效应。","authors":"Fatemeh Bandarian, Farideh Razi, Mostafa Rezaei-Tavirani, Babak Arjmand, Somayeh Jahani Sherafat, Mohammad Rostami Nejad","doi":"10.34172/jlms.2024.20","DOIUrl":null,"url":null,"abstract":"<p><p><b>Introduction:</b> Photoaging that is accompanied by gene expression alteration is known as early aging of the skin due to overexposure to natural and/or artificial ultraviolet radiation (UVR). The assessment of gene expression alteration in human primary neonatal dermal fibroblasts depending on recovery time after exposure to solar simulated ultraviolet radiation (ssUVR) is the main aim of this bioinformatic study. <b>Methods:</b> Data are extracted from Gene Expression Omnibus (GEO). The pre-evaluation is done via the GEO2R program. The Significant differentially expressed genes (DEGs) were assessed via protein-protein interaction (PPI) network analysis, and the central genes were identified. The central genes were enriched via gene ontology assessment. <b>Results:</b> Among 224 significant DEGs, 20 central genes including TOP2A, MKI67, BRCA1, HELLS, MAD2L1, ANLN, KIF11, MSH2, KRAS, NCAPG, RFC3, PLK4, WDHD1, BLM, CDKN3, KIF15, SMARCA5, and ATAD2 as hub genes and TOP2A, MKI67, BRCA1, ANLN, KRAS, PLK4, SMARCA5, MMP2, and TLR4 as bottleneck genes were determined. Eight central genes were associated with 16 biological terms. <b>Conclusion:</b> In conclusion, significant differences appeared between gene expression conditions of the cells after 1-day and 5-day recovery. Molecular events include the repair and continuation of photodamages. It is possible to introduce drug targets to prevent the progress of induced damages.</p>","PeriodicalId":16224,"journal":{"name":"Journal of lasers in medical sciences","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267406/pdf/","citationCount":"0","resultStr":"{\"title\":\"Assessment of Recovery Time Effects on Human Primary Neonatal Dermal Fibroblasts After Exposure to Solar-Simulated Ultraviolet Radiation.\",\"authors\":\"Fatemeh Bandarian, Farideh Razi, Mostafa Rezaei-Tavirani, Babak Arjmand, Somayeh Jahani Sherafat, Mohammad Rostami Nejad\",\"doi\":\"10.34172/jlms.2024.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Introduction:</b> Photoaging that is accompanied by gene expression alteration is known as early aging of the skin due to overexposure to natural and/or artificial ultraviolet radiation (UVR). The assessment of gene expression alteration in human primary neonatal dermal fibroblasts depending on recovery time after exposure to solar simulated ultraviolet radiation (ssUVR) is the main aim of this bioinformatic study. <b>Methods:</b> Data are extracted from Gene Expression Omnibus (GEO). The pre-evaluation is done via the GEO2R program. The Significant differentially expressed genes (DEGs) were assessed via protein-protein interaction (PPI) network analysis, and the central genes were identified. The central genes were enriched via gene ontology assessment. <b>Results:</b> Among 224 significant DEGs, 20 central genes including TOP2A, MKI67, BRCA1, HELLS, MAD2L1, ANLN, KIF11, MSH2, KRAS, NCAPG, RFC3, PLK4, WDHD1, BLM, CDKN3, KIF15, SMARCA5, and ATAD2 as hub genes and TOP2A, MKI67, BRCA1, ANLN, KRAS, PLK4, SMARCA5, MMP2, and TLR4 as bottleneck genes were determined. Eight central genes were associated with 16 biological terms. <b>Conclusion:</b> In conclusion, significant differences appeared between gene expression conditions of the cells after 1-day and 5-day recovery. Molecular events include the repair and continuation of photodamages. It is possible to introduce drug targets to prevent the progress of induced damages.</p>\",\"PeriodicalId\":16224,\"journal\":{\"name\":\"Journal of lasers in medical sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267406/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of lasers in medical sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34172/jlms.2024.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of lasers in medical sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34172/jlms.2024.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

导言:伴随基因表达改变的光老化被称为因过度暴露于天然和/或人工紫外线辐射(UVR)而导致的皮肤早期老化。本生物信息学研究的主要目的是根据暴露于太阳模拟紫外线辐射(ssUVR)后的恢复时间,评估人类原代新生儿真皮成纤维细胞的基因表达变化。研究方法数据提取自基因表达总库(GEO)。通过 GEO2R 程序进行预评估。通过蛋白质-蛋白质相互作用(PPI)网络分析评估重要的差异表达基因(DEGs),并确定中心基因。通过基因本体评估对中心基因进行了富集。结果显示在 224 个重要的 DEGs 中,20 个中心基因包括 TOP2A、MKI67、BRCA1、HELLS、MAD2L1、ANLN、KIF11、MSH2、KRAS、NCAPG、RFC3、PLK4、WDHD1、BLM、确定了 CDKN3、KIF15、SMARCA5 和 ATAD2 为中心基因,TOP2A、MKI67、BRCA1、ANLN、KRAS、PLK4、SMARCA5、MMP2 和 TLR4 为瓶颈基因。8 个中心基因与 16 个生物学术语相关。结论总之,细胞在恢复 1 天和 5 天后的基因表达情况出现了明显差异。分子事件包括光损伤的修复和延续。有可能引入药物靶点来防止诱导损伤的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessment of Recovery Time Effects on Human Primary Neonatal Dermal Fibroblasts After Exposure to Solar-Simulated Ultraviolet Radiation.

Introduction: Photoaging that is accompanied by gene expression alteration is known as early aging of the skin due to overexposure to natural and/or artificial ultraviolet radiation (UVR). The assessment of gene expression alteration in human primary neonatal dermal fibroblasts depending on recovery time after exposure to solar simulated ultraviolet radiation (ssUVR) is the main aim of this bioinformatic study. Methods: Data are extracted from Gene Expression Omnibus (GEO). The pre-evaluation is done via the GEO2R program. The Significant differentially expressed genes (DEGs) were assessed via protein-protein interaction (PPI) network analysis, and the central genes were identified. The central genes were enriched via gene ontology assessment. Results: Among 224 significant DEGs, 20 central genes including TOP2A, MKI67, BRCA1, HELLS, MAD2L1, ANLN, KIF11, MSH2, KRAS, NCAPG, RFC3, PLK4, WDHD1, BLM, CDKN3, KIF15, SMARCA5, and ATAD2 as hub genes and TOP2A, MKI67, BRCA1, ANLN, KRAS, PLK4, SMARCA5, MMP2, and TLR4 as bottleneck genes were determined. Eight central genes were associated with 16 biological terms. Conclusion: In conclusion, significant differences appeared between gene expression conditions of the cells after 1-day and 5-day recovery. Molecular events include the repair and continuation of photodamages. It is possible to introduce drug targets to prevent the progress of induced damages.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of lasers in medical sciences
Journal of lasers in medical sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
3.00
自引率
13.30%
发文量
24
期刊介绍: The "Journal of Lasers in Medical Sciences " is a scientific quarterly publication of the Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences. This journal received a scientific and research rank from the national medical publication committee. This Journal accepts original papers, review articles, case reports, brief reports, case series, photo assays, letters to the editor, and commentaries in the field of laser, or light in any fields of medicine such as the following medical specialties: -Dermatology -General and Vascular Surgery -Oncology -Cardiology -Dentistry -Urology -Rehabilitation -Ophthalmology -Otorhinolaryngology -Gynecology & Obstetrics -Internal Medicine -Orthopedics -Neurosurgery -Radiology -Pain Medicine (Algology) -Basic Sciences (Stem cell, Cellular and Molecular application and physic)
期刊最新文献
Effects of Photobiomodulation Using Low-Power Diode Laser Therapy and Nano-bone on Mandibular Bone Regeneration in Rats. Comparison of the Effects of Gluma Gel, Sensodyne Repair and Protect Toothpaste, and an 810 nm Low Power Diode Laser on the Closure of Dentinal Tubules: An In Vitro Study. Photobiomodulation Improves Histological Parameters of Testis and Spermatogenesis in Adult Mice Exposed to Scrotal Hyperthermia in the Prepubertal Phase. Enhanced Therapeutic Efficacy of Gold Nanoparticle-Enhanced Laser Therapy for Oral Cancer: A Promising Photothermal Approach. Molecular Mechanism Analysis of Intensive Light-Induced Retinal Damages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1