通过 CRISPR/Cas 介导的增强子敲入技术,实现植物基因的高效和多重上调。

IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Plant Pub Date : 2024-09-02 Epub Date: 2024-07-23 DOI:10.1016/j.molp.2024.07.009
Qi Yao, Rundong Shen, Yang Shao, Yifu Tian, Peijin Han, Xuening Zhang, Jian-Kang Zhu, Yuming Lu
{"title":"通过 CRISPR/Cas 介导的增强子敲入技术,实现植物基因的高效和多重上调。","authors":"Qi Yao, Rundong Shen, Yang Shao, Yifu Tian, Peijin Han, Xuening Zhang, Jian-Kang Zhu, Yuming Lu","doi":"10.1016/j.molp.2024.07.009","DOIUrl":null,"url":null,"abstract":"<p><p>Gene upregulation through genome editing is important for plant research and breeding. Targeted insertion of short transcriptional enhancers (STEs) into gene promoters may offer a universal solution akin to transgene-mediated overexpression while avoiding the drawbacks associated with transgenesis. Here, we introduce an \"in locus activation\" technique in rice that leverages well-characterized STEs for refined, heritable, and multiplexed gene upregulation. To address the scarcity of potent enhancers, we developed a large-scale mining approach and discovered a suite of STEs that are capable of enhancing gene expression in rice protoplasts. The in locus integration of these STEs into eight rice genes resulted in substantial transcriptional upregulation in the edited plants, with up to 869.1-fold increases in their transcript levels. Employing a variety of STEs, we achieved delicate control of gene expression, enabling the fine-tuning of key phenotypic traits such as plant height. Our approach also enabled efficient multiplexed gene upregulation, with up to four genes activated simultaneously, significantly enhancing the nicotinamide mononucleotide metabolic pathway. Importantly, heritability studies from the T0 to T3 generations confirmed the stable and heritable nature of STE-driven gene activation. Collectively, our work demonstrates that coupled with STE mining, leveraging genome editing for in locus activation and gene upregulation holds great promise to be widely adopted in fundamental plant research and crop breeding.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"1472-1483"},"PeriodicalIF":17.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient and multiplex gene upregulation in plants through CRISPR-Cas-mediated knockin of enhancers.\",\"authors\":\"Qi Yao, Rundong Shen, Yang Shao, Yifu Tian, Peijin Han, Xuening Zhang, Jian-Kang Zhu, Yuming Lu\",\"doi\":\"10.1016/j.molp.2024.07.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gene upregulation through genome editing is important for plant research and breeding. Targeted insertion of short transcriptional enhancers (STEs) into gene promoters may offer a universal solution akin to transgene-mediated overexpression while avoiding the drawbacks associated with transgenesis. Here, we introduce an \\\"in locus activation\\\" technique in rice that leverages well-characterized STEs for refined, heritable, and multiplexed gene upregulation. To address the scarcity of potent enhancers, we developed a large-scale mining approach and discovered a suite of STEs that are capable of enhancing gene expression in rice protoplasts. The in locus integration of these STEs into eight rice genes resulted in substantial transcriptional upregulation in the edited plants, with up to 869.1-fold increases in their transcript levels. Employing a variety of STEs, we achieved delicate control of gene expression, enabling the fine-tuning of key phenotypic traits such as plant height. Our approach also enabled efficient multiplexed gene upregulation, with up to four genes activated simultaneously, significantly enhancing the nicotinamide mononucleotide metabolic pathway. Importantly, heritability studies from the T0 to T3 generations confirmed the stable and heritable nature of STE-driven gene activation. Collectively, our work demonstrates that coupled with STE mining, leveraging genome editing for in locus activation and gene upregulation holds great promise to be widely adopted in fundamental plant research and crop breeding.</p>\",\"PeriodicalId\":19012,\"journal\":{\"name\":\"Molecular Plant\",\"volume\":\" \",\"pages\":\"1472-1483\"},\"PeriodicalIF\":17.1000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Plant\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.molp.2024.07.009\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molp.2024.07.009","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

通过基因组编辑进行基因上调对植物研究和育种非常重要。将短转录增强子(STEs)定向插入基因启动子可能提供一种类似于转基因介导的过表达的通用解决方案,同时避免了与转基因相关的缺点。在这里,我们在水稻中引入了一种 "病灶内激活 "技术,利用专门筛选的 STEs 进行精细、可遗传和多重的基因上调。为了解决强效增强子稀缺的问题,我们开发了一种大规模挖掘方法,发现了一系列能够增强水稻原生质体中基因表达的 STE。将这些 STEs 在病灶内整合到 8 个水稻基因中可显著提高转录水平,编辑后的植株转录水平最高可提高 869.1 倍。通过使用多种 STE,我们实现了对基因表达的精细控制,从而对植株高度等关键表型性状进行了微调。我们的方法还实现了高效的多重基因上调,多达四个基因同时被激活,显著增强了烟酰胺单核苷酸(NMN)代谢途径。重要的是,从 T0 代到 T3 代的遗传性研究证实了 STE 驱动基因激活的稳定性和遗传性。结合我们的 STE 挖掘技术,病灶内激活有望使基因上调成为基因组编辑在植物研究和育种中的主要应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient and multiplex gene upregulation in plants through CRISPR-Cas-mediated knockin of enhancers.

Gene upregulation through genome editing is important for plant research and breeding. Targeted insertion of short transcriptional enhancers (STEs) into gene promoters may offer a universal solution akin to transgene-mediated overexpression while avoiding the drawbacks associated with transgenesis. Here, we introduce an "in locus activation" technique in rice that leverages well-characterized STEs for refined, heritable, and multiplexed gene upregulation. To address the scarcity of potent enhancers, we developed a large-scale mining approach and discovered a suite of STEs that are capable of enhancing gene expression in rice protoplasts. The in locus integration of these STEs into eight rice genes resulted in substantial transcriptional upregulation in the edited plants, with up to 869.1-fold increases in their transcript levels. Employing a variety of STEs, we achieved delicate control of gene expression, enabling the fine-tuning of key phenotypic traits such as plant height. Our approach also enabled efficient multiplexed gene upregulation, with up to four genes activated simultaneously, significantly enhancing the nicotinamide mononucleotide metabolic pathway. Importantly, heritability studies from the T0 to T3 generations confirmed the stable and heritable nature of STE-driven gene activation. Collectively, our work demonstrates that coupled with STE mining, leveraging genome editing for in locus activation and gene upregulation holds great promise to be widely adopted in fundamental plant research and crop breeding.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Plant
Molecular Plant 植物科学-生化与分子生物学
CiteScore
37.60
自引率
2.20%
发文量
1784
审稿时长
1 months
期刊介绍: Molecular Plant is dedicated to serving the plant science community by publishing novel and exciting findings with high significance in plant biology. The journal focuses broadly on cellular biology, physiology, biochemistry, molecular biology, genetics, development, plant-microbe interaction, genomics, bioinformatics, and molecular evolution. Molecular Plant publishes original research articles, reviews, Correspondence, and Spotlights on the most important developments in plant biology.
期刊最新文献
A TT1-SCE1 module integrates ubiquitination and SUMOylation to regulate heat tolerance in rice. Branching out: nitrogen-dependent modulation of strigolactone signalling. The long non-coding RNA CARMA directs sucrose-responsive osmoregulation. A metabolic roadmap of waxy corn flavor. Volatilome-based GWAS identifies OsWRKY19 and OsNAC021 as key regulators of rice aroma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1