Andrew Barros, Ian German Mesner, N Rich Nguyen, J Randall Moorman
{"title":"利用深度学习从 12 导联心电图预测年龄:在当代免费数据集上比较四种模型。","authors":"Andrew Barros, Ian German Mesner, N Rich Nguyen, J Randall Moorman","doi":"10.1088/1361-6579/ad6746","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>The 12-lead electrocardiogram (ECG) is routine in clinical use and deep learning approaches have been shown to have the identify features not immediately apparent to human interpreters including age and sex. Several models have been published but no direct comparisons exist.<i>Approach.</i>We implemented three previously published models and one unpublished model to predict age and sex from a 12-lead ECG and then compared their performance on an open-access data set.<i>Main results.</i>All models converged and were evaluated on the holdout set. The best preforming age prediction model had a hold-out set mean absolute error of 8.06 years. The best preforming sex prediction model had a hold-out set area under the receiver operating curve of 0.92.<i>Significance.</i>We compared performance of four models on an open-access dataset.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334242/pdf/","citationCount":"0","resultStr":"{\"title\":\"Age prediction from 12-lead electrocardiograms using deep learning: a comparison of four models on a contemporary, freely available dataset.\",\"authors\":\"Andrew Barros, Ian German Mesner, N Rich Nguyen, J Randall Moorman\",\"doi\":\"10.1088/1361-6579/ad6746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective.</i>The 12-lead electrocardiogram (ECG) is routine in clinical use and deep learning approaches have been shown to have the identify features not immediately apparent to human interpreters including age and sex. Several models have been published but no direct comparisons exist.<i>Approach.</i>We implemented three previously published models and one unpublished model to predict age and sex from a 12-lead ECG and then compared their performance on an open-access data set.<i>Main results.</i>All models converged and were evaluated on the holdout set. The best preforming age prediction model had a hold-out set mean absolute error of 8.06 years. The best preforming sex prediction model had a hold-out set area under the receiver operating curve of 0.92.<i>Significance.</i>We compared performance of four models on an open-access dataset.</p>\",\"PeriodicalId\":20047,\"journal\":{\"name\":\"Physiological measurement\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334242/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6579/ad6746\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological measurement","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6579/ad6746","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Age prediction from 12-lead electrocardiograms using deep learning: a comparison of four models on a contemporary, freely available dataset.
Objective.The 12-lead electrocardiogram (ECG) is routine in clinical use and deep learning approaches have been shown to have the identify features not immediately apparent to human interpreters including age and sex. Several models have been published but no direct comparisons exist.Approach.We implemented three previously published models and one unpublished model to predict age and sex from a 12-lead ECG and then compared their performance on an open-access data set.Main results.All models converged and were evaluated on the holdout set. The best preforming age prediction model had a hold-out set mean absolute error of 8.06 years. The best preforming sex prediction model had a hold-out set area under the receiver operating curve of 0.92.Significance.We compared performance of four models on an open-access dataset.
期刊介绍:
Physiological Measurement publishes papers about the quantitative assessment and visualization of physiological function in clinical research and practice, with an emphasis on the development of new methods of measurement and their validation.
Papers are published on topics including:
applied physiology in illness and health
electrical bioimpedance, optical and acoustic measurement techniques
advanced methods of time series and other data analysis
biomedical and clinical engineering
in-patient and ambulatory monitoring
point-of-care technologies
novel clinical measurements of cardiovascular, neurological, and musculoskeletal systems.
measurements in molecular, cellular and organ physiology and electrophysiology
physiological modeling and simulation
novel biomedical sensors, instruments, devices and systems
measurement standards and guidelines.