{"title":"C(4a)-(hydro)peroxyflavin 水辅助过氧化氢形成的 DFT 模型。","authors":"Yılmaz Özkiliç","doi":"10.55730/1300-0527.3673","DOIUrl":null,"url":null,"abstract":"<p><p>The cofactor of a class A monooxygenase is reduced at an external location of the enzyme and is subsequently pulled back into the active site after the reduction. This observation brings the question; is there any defense mechanism of the active site of a monooxygenase against the formation of the harmful hydrogen peroxide from the reactive C(4a)-(hydro)peroxide intermediate? In this study, the barrier energies of one to three water molecule-mediated uncoupling reaction mechanisms in water exposed reaction conditions were determined. These were found to be facile barriers. Secondly, uncoupling was modeled in the active site of kynurenine 3-monooxygenase complex which was represented with 258 atoms utilizing cluster approach. Comparison of the barrier energy of the cluster model to the models that represent the water exposed conditions revealed that the enzyme does not have an inhibitory reaction site architecture as the compared barrier energies are roughly the same. The main defense mechanism of KMO against the formation of the hydrogen peroxide is deduced to be the insulation, and without this insulation, the monooxygenation would not take place as the barrier height of the hydrogen peroxide formation within the active site is almost half of that of the monooxygenation.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":"48 3","pages":"470-483"},"PeriodicalIF":1.3000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265908/pdf/","citationCount":"0","resultStr":"{\"title\":\"DFT modeling of water-assisted hydrogen peroxide formation from a C(4a)-(hydro)peroxyflavin.\",\"authors\":\"Yılmaz Özkiliç\",\"doi\":\"10.55730/1300-0527.3673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The cofactor of a class A monooxygenase is reduced at an external location of the enzyme and is subsequently pulled back into the active site after the reduction. This observation brings the question; is there any defense mechanism of the active site of a monooxygenase against the formation of the harmful hydrogen peroxide from the reactive C(4a)-(hydro)peroxide intermediate? In this study, the barrier energies of one to three water molecule-mediated uncoupling reaction mechanisms in water exposed reaction conditions were determined. These were found to be facile barriers. Secondly, uncoupling was modeled in the active site of kynurenine 3-monooxygenase complex which was represented with 258 atoms utilizing cluster approach. Comparison of the barrier energy of the cluster model to the models that represent the water exposed conditions revealed that the enzyme does not have an inhibitory reaction site architecture as the compared barrier energies are roughly the same. The main defense mechanism of KMO against the formation of the hydrogen peroxide is deduced to be the insulation, and without this insulation, the monooxygenation would not take place as the barrier height of the hydrogen peroxide formation within the active site is almost half of that of the monooxygenation.</p>\",\"PeriodicalId\":23367,\"journal\":{\"name\":\"Turkish Journal of Chemistry\",\"volume\":\"48 3\",\"pages\":\"470-483\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265908/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0527.3673\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.55730/1300-0527.3673","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
A 类单加氧酶的辅助因子在酶的外部位置被还原,还原后又被拉回活性位点。这一观察结果提出了一个问题:单加氧酶的活性位点是否存在任何防御机制,以防止活性 C(4a)-(氢)过氧化物中间体形成有害的过氧化氢?本研究测定了一至三种水分子介导的解偶联反应机制在遇水反应条件下的势垒能。结果发现,这些都是简单的势垒。其次,在犬尿氨酸 3-单加氧酶复合物的活性位点建立了解偶联模型。将聚类模型的势垒能与表示水暴露条件的模型进行比较后发现,该酶没有抑制反应位点结构,因为两者的势垒能大致相同。推断出 KMO 对过氧化氢形成的主要防御机制是隔绝,如果没有这种隔绝,一氧化反应就不会发生,因为活性位点内过氧化氢形成的势垒高度几乎是一氧化反应的一半。
DFT modeling of water-assisted hydrogen peroxide formation from a C(4a)-(hydro)peroxyflavin.
The cofactor of a class A monooxygenase is reduced at an external location of the enzyme and is subsequently pulled back into the active site after the reduction. This observation brings the question; is there any defense mechanism of the active site of a monooxygenase against the formation of the harmful hydrogen peroxide from the reactive C(4a)-(hydro)peroxide intermediate? In this study, the barrier energies of one to three water molecule-mediated uncoupling reaction mechanisms in water exposed reaction conditions were determined. These were found to be facile barriers. Secondly, uncoupling was modeled in the active site of kynurenine 3-monooxygenase complex which was represented with 258 atoms utilizing cluster approach. Comparison of the barrier energy of the cluster model to the models that represent the water exposed conditions revealed that the enzyme does not have an inhibitory reaction site architecture as the compared barrier energies are roughly the same. The main defense mechanism of KMO against the formation of the hydrogen peroxide is deduced to be the insulation, and without this insulation, the monooxygenation would not take place as the barrier height of the hydrogen peroxide formation within the active site is almost half of that of the monooxygenation.
期刊介绍:
The Turkish Journal of Chemistry is a bimonthly multidisciplinary journal published by the Scientific and Technological Research Council of Turkey (TÜBİTAK).
The journal is dedicated to dissemination of knowledge in all disciplines of chemistry (organic, inorganic, physical, polymeric, technical, theoretical and analytical chemistry) as well as research at the interface with other sciences especially in chemical engineering where molecular aspects are key to the findings.
The journal accepts English-language original manuscripts and contribution is open to researchers of all nationalities.
The journal publishes refereed original papers, reviews, letters to editor and issues devoted to special fields.
All manuscripts are peer-reviewed and electronic processing ensures accurate reproduction of text and data, plus publication times as short as possible.