{"title":"锡类化合物 H2SnLiF 与 X-H 键(X = N、O、F)插入反应的理论研究。","authors":"Shuo Wu, Bingfei Yan, Shaoli Liu, Wenzuo Li","doi":"10.55730/1300-0527.3671","DOIUrl":null,"url":null,"abstract":"<p><p>The insertion reactions of p-complex (RP) and three-membered ring configuration (RS) of stannylenoid H<sub>2</sub>SnLiF with NH<sub>3</sub>, H<sub>2</sub>O and HF have been studied theoretically by quantum chemical calculation. The structures of reactants, precursors, transition states, intermediates and products have been fully optimized at the M06-2X/def2-TZVP level. The single point energy of all fixed points were calculated using the QCISD method. The calculation results show that the three-membered ring configuration is easier to conduct the insertion reaction. Comparing the reaction energy barriers of RP, RS to NH<sub>3</sub>, H<sub>2</sub>O and HF, we found that the difficulty of the insertion reaction is NH<sub>3</sub> > H<sub>2</sub>O > HF. The solvent corrected calculation results show that in THF, the reaction energy barrier of RP is lower than that in vacuum, while the reaction energy barrier of RS is higher. This work provides theoretical support for the reaction properties of stannylenoid.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265926/pdf/","citationCount":"0","resultStr":"{\"title\":\"Theoretical study on the insertion reaction of the stannylenoid H<sub>2</sub>SnLiF with X-H bonds (X = N, O, F).\",\"authors\":\"Shuo Wu, Bingfei Yan, Shaoli Liu, Wenzuo Li\",\"doi\":\"10.55730/1300-0527.3671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The insertion reactions of p-complex (RP) and three-membered ring configuration (RS) of stannylenoid H<sub>2</sub>SnLiF with NH<sub>3</sub>, H<sub>2</sub>O and HF have been studied theoretically by quantum chemical calculation. The structures of reactants, precursors, transition states, intermediates and products have been fully optimized at the M06-2X/def2-TZVP level. The single point energy of all fixed points were calculated using the QCISD method. The calculation results show that the three-membered ring configuration is easier to conduct the insertion reaction. Comparing the reaction energy barriers of RP, RS to NH<sub>3</sub>, H<sub>2</sub>O and HF, we found that the difficulty of the insertion reaction is NH<sub>3</sub> > H<sub>2</sub>O > HF. The solvent corrected calculation results show that in THF, the reaction energy barrier of RP is lower than that in vacuum, while the reaction energy barrier of RS is higher. This work provides theoretical support for the reaction properties of stannylenoid.</p>\",\"PeriodicalId\":23367,\"journal\":{\"name\":\"Turkish Journal of Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265926/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0527.3671\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.55730/1300-0527.3671","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Theoretical study on the insertion reaction of the stannylenoid H2SnLiF with X-H bonds (X = N, O, F).
The insertion reactions of p-complex (RP) and three-membered ring configuration (RS) of stannylenoid H2SnLiF with NH3, H2O and HF have been studied theoretically by quantum chemical calculation. The structures of reactants, precursors, transition states, intermediates and products have been fully optimized at the M06-2X/def2-TZVP level. The single point energy of all fixed points were calculated using the QCISD method. The calculation results show that the three-membered ring configuration is easier to conduct the insertion reaction. Comparing the reaction energy barriers of RP, RS to NH3, H2O and HF, we found that the difficulty of the insertion reaction is NH3 > H2O > HF. The solvent corrected calculation results show that in THF, the reaction energy barrier of RP is lower than that in vacuum, while the reaction energy barrier of RS is higher. This work provides theoretical support for the reaction properties of stannylenoid.
期刊介绍:
The Turkish Journal of Chemistry is a bimonthly multidisciplinary journal published by the Scientific and Technological Research Council of Turkey (TÜBİTAK).
The journal is dedicated to dissemination of knowledge in all disciplines of chemistry (organic, inorganic, physical, polymeric, technical, theoretical and analytical chemistry) as well as research at the interface with other sciences especially in chemical engineering where molecular aspects are key to the findings.
The journal accepts English-language original manuscripts and contribution is open to researchers of all nationalities.
The journal publishes refereed original papers, reviews, letters to editor and issues devoted to special fields.
All manuscripts are peer-reviewed and electronic processing ensures accurate reproduction of text and data, plus publication times as short as possible.