Hongjie Gao, Chen Ding, Mengmeng Chang, Zhiyi Lu, Ding Li, Dan Bi, Fengyin Sun
{"title":"尿道下裂中上皮-间质转化相关关键长非编码 RNA 的鉴定与分析","authors":"Hongjie Gao, Chen Ding, Mengmeng Chang, Zhiyi Lu, Ding Li, Dan Bi, Fengyin Sun","doi":"10.1049/syb2.12096","DOIUrl":null,"url":null,"abstract":"<p>EMT dysfunction is a dominant mechanisms of hypospadias. Thus, identification of EMT-related lncRNAs based on transcriptome sequencing data of hypospadias might provide novel molecular markers and therapeutic targets for hypospadias. First, the microarray data related to hypospadias were downloaded from Gene Expression Omnibus (GEO). Besides, the differentially expressed lncRNAs and messenger RNAs (mRNAs) related to EMT were screened to construct lncRNA-mRNA co-expression interaction pairs. In addition, the microRNA (miRNA) prediction analysis was performed through bioinformatics methods to construct a ceRNA network. Moreover, function prediction and function enrichment and pathway analyses were also performed. Finally, the core EMT-related lncRNAs were verified based on mRNA expression changes and cell functions. A total of 6 EMT-related lncRNAs were identified and 123 mRNA-lncRNA co-expression interaction pairs were screened in this study. Additionally, a ceRNA regulatory network comprising 17 mRNAs, 4 lncRNAs, and 28 miRNAs was constructed based on the prediction of hypospadias-related miRNAs. The validation results of the dataset GSE121712 revealed that only BEX1 was positively correlated with the expression of the lncRNA GNAS-AS1 (r = 0.874, <i>P</i> < 0.01), both of which had high expression. The cell experiment results demonstrated that interfering with the expression of GNAS-AS1 significantly promoted the proliferation, migration, and EMT of cells. Importantly, it was confirmed that GNAS-AS1 can serve as a ceRNA and play an important role in the EMT of hypospadias. Hence, it may be considered as a potential target in the treatment of this disease.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"18 4","pages":"143-154"},"PeriodicalIF":1.9000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.12096","citationCount":"0","resultStr":"{\"title\":\"Identification and analysis of epithelial-mesenchymal transition-related key long non-coding RNAs in hypospadias\",\"authors\":\"Hongjie Gao, Chen Ding, Mengmeng Chang, Zhiyi Lu, Ding Li, Dan Bi, Fengyin Sun\",\"doi\":\"10.1049/syb2.12096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>EMT dysfunction is a dominant mechanisms of hypospadias. Thus, identification of EMT-related lncRNAs based on transcriptome sequencing data of hypospadias might provide novel molecular markers and therapeutic targets for hypospadias. First, the microarray data related to hypospadias were downloaded from Gene Expression Omnibus (GEO). Besides, the differentially expressed lncRNAs and messenger RNAs (mRNAs) related to EMT were screened to construct lncRNA-mRNA co-expression interaction pairs. In addition, the microRNA (miRNA) prediction analysis was performed through bioinformatics methods to construct a ceRNA network. Moreover, function prediction and function enrichment and pathway analyses were also performed. Finally, the core EMT-related lncRNAs were verified based on mRNA expression changes and cell functions. A total of 6 EMT-related lncRNAs were identified and 123 mRNA-lncRNA co-expression interaction pairs were screened in this study. Additionally, a ceRNA regulatory network comprising 17 mRNAs, 4 lncRNAs, and 28 miRNAs was constructed based on the prediction of hypospadias-related miRNAs. The validation results of the dataset GSE121712 revealed that only BEX1 was positively correlated with the expression of the lncRNA GNAS-AS1 (r = 0.874, <i>P</i> < 0.01), both of which had high expression. The cell experiment results demonstrated that interfering with the expression of GNAS-AS1 significantly promoted the proliferation, migration, and EMT of cells. Importantly, it was confirmed that GNAS-AS1 can serve as a ceRNA and play an important role in the EMT of hypospadias. Hence, it may be considered as a potential target in the treatment of this disease.</p>\",\"PeriodicalId\":50379,\"journal\":{\"name\":\"IET Systems Biology\",\"volume\":\"18 4\",\"pages\":\"143-154\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.12096\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Systems Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12096\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12096","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Identification and analysis of epithelial-mesenchymal transition-related key long non-coding RNAs in hypospadias
EMT dysfunction is a dominant mechanisms of hypospadias. Thus, identification of EMT-related lncRNAs based on transcriptome sequencing data of hypospadias might provide novel molecular markers and therapeutic targets for hypospadias. First, the microarray data related to hypospadias were downloaded from Gene Expression Omnibus (GEO). Besides, the differentially expressed lncRNAs and messenger RNAs (mRNAs) related to EMT were screened to construct lncRNA-mRNA co-expression interaction pairs. In addition, the microRNA (miRNA) prediction analysis was performed through bioinformatics methods to construct a ceRNA network. Moreover, function prediction and function enrichment and pathway analyses were also performed. Finally, the core EMT-related lncRNAs were verified based on mRNA expression changes and cell functions. A total of 6 EMT-related lncRNAs were identified and 123 mRNA-lncRNA co-expression interaction pairs were screened in this study. Additionally, a ceRNA regulatory network comprising 17 mRNAs, 4 lncRNAs, and 28 miRNAs was constructed based on the prediction of hypospadias-related miRNAs. The validation results of the dataset GSE121712 revealed that only BEX1 was positively correlated with the expression of the lncRNA GNAS-AS1 (r = 0.874, P < 0.01), both of which had high expression. The cell experiment results demonstrated that interfering with the expression of GNAS-AS1 significantly promoted the proliferation, migration, and EMT of cells. Importantly, it was confirmed that GNAS-AS1 can serve as a ceRNA and play an important role in the EMT of hypospadias. Hence, it may be considered as a potential target in the treatment of this disease.
期刊介绍:
IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells.
The scope includes the following topics:
Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.