{"title":"基于四重目标的云隐私保护模型,建议关联规则隐藏和深度学习辅助最优密钥生成。","authors":"Smita Sharma, Sanjay Tyagi","doi":"10.1080/0954898X.2024.2378836","DOIUrl":null,"url":null,"abstract":"<p><p>Numerous studies have been conducted in an attempt to preserve cloud privacy, yet the majority of cutting-edge solutions fall short when it comes to handling sensitive data. This research proposes a \"privacy preservation model in the cloud environment\". The four stages of recommended security preservation methodology are \"identification of sensitive data, generation of an optimal tuned key, suggested data sanitization, and data restoration\". Initially, owner's data enters the Sensitive data identification process. The sensitive information in the input (owner's data) is identified via Augmented Dynamic Itemset Counting (ADIC) based Associative Rule Mining Model. Subsequently, the identified sensitive data are sanitized via the newly created tuned key. The generated tuned key is formulated with new fourfold objective-hybrid optimization approach-based deep learning approach. The optimally tuned key is generated with LSTM on the basis of fourfold objectives and the new hybrid MUAOA. The created keys, as well as generated sensitive rules, are fed into the deep learning model. The MUAOA technique is a conceptual blend of standard AOA and CMBO, respectively. As a result, unauthorized people will be unable to access information. Finally, comparative evaluation is undergone and proposed LSTM+MUAOA has achieved higher values on privacy about 5.21 compared to other existing models.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-36"},"PeriodicalIF":1.1000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fourfold-objective-based cloud privacy preservation model with proposed association rule hiding and deep learning assisted optimal key generation.\",\"authors\":\"Smita Sharma, Sanjay Tyagi\",\"doi\":\"10.1080/0954898X.2024.2378836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Numerous studies have been conducted in an attempt to preserve cloud privacy, yet the majority of cutting-edge solutions fall short when it comes to handling sensitive data. This research proposes a \\\"privacy preservation model in the cloud environment\\\". The four stages of recommended security preservation methodology are \\\"identification of sensitive data, generation of an optimal tuned key, suggested data sanitization, and data restoration\\\". Initially, owner's data enters the Sensitive data identification process. The sensitive information in the input (owner's data) is identified via Augmented Dynamic Itemset Counting (ADIC) based Associative Rule Mining Model. Subsequently, the identified sensitive data are sanitized via the newly created tuned key. The generated tuned key is formulated with new fourfold objective-hybrid optimization approach-based deep learning approach. The optimally tuned key is generated with LSTM on the basis of fourfold objectives and the new hybrid MUAOA. The created keys, as well as generated sensitive rules, are fed into the deep learning model. The MUAOA technique is a conceptual blend of standard AOA and CMBO, respectively. As a result, unauthorized people will be unable to access information. Finally, comparative evaluation is undergone and proposed LSTM+MUAOA has achieved higher values on privacy about 5.21 compared to other existing models.</p>\",\"PeriodicalId\":54735,\"journal\":{\"name\":\"Network-Computation in Neural Systems\",\"volume\":\" \",\"pages\":\"1-36\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network-Computation in Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/0954898X.2024.2378836\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2378836","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A fourfold-objective-based cloud privacy preservation model with proposed association rule hiding and deep learning assisted optimal key generation.
Numerous studies have been conducted in an attempt to preserve cloud privacy, yet the majority of cutting-edge solutions fall short when it comes to handling sensitive data. This research proposes a "privacy preservation model in the cloud environment". The four stages of recommended security preservation methodology are "identification of sensitive data, generation of an optimal tuned key, suggested data sanitization, and data restoration". Initially, owner's data enters the Sensitive data identification process. The sensitive information in the input (owner's data) is identified via Augmented Dynamic Itemset Counting (ADIC) based Associative Rule Mining Model. Subsequently, the identified sensitive data are sanitized via the newly created tuned key. The generated tuned key is formulated with new fourfold objective-hybrid optimization approach-based deep learning approach. The optimally tuned key is generated with LSTM on the basis of fourfold objectives and the new hybrid MUAOA. The created keys, as well as generated sensitive rules, are fed into the deep learning model. The MUAOA technique is a conceptual blend of standard AOA and CMBO, respectively. As a result, unauthorized people will be unable to access information. Finally, comparative evaluation is undergone and proposed LSTM+MUAOA has achieved higher values on privacy about 5.21 compared to other existing models.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.