利用深度神经网络通过简短录音预测肥胖:开发和可用性研究

JMIR AI Pub Date : 2024-07-25 DOI:10.2196/54885
Jingyi Huang, Peiqi Guo, Sheng Zhang, Mengmeng Ji, Ruopeng An
{"title":"利用深度神经网络通过简短录音预测肥胖:开发和可用性研究","authors":"Jingyi Huang, Peiqi Guo, Sheng Zhang, Mengmeng Ji, Ruopeng An","doi":"10.2196/54885","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The escalating global prevalence of obesity has necessitated the exploration of novel diagnostic approaches. Recent scientific inquiries have indicated potential alterations in voice characteristics associated with obesity, suggesting the feasibility of using voice as a noninvasive biomarker for obesity detection.</p><p><strong>Objective: </strong>This study aims to use deep neural networks to predict obesity status through the analysis of short audio recordings, investigating the relationship between vocal characteristics and obesity.</p><p><strong>Methods: </strong>A pilot study was conducted with 696 participants, using self-reported BMI to classify individuals into obesity and nonobesity groups. Audio recordings of participants reading a short script were transformed into spectrograms and analyzed using an adapted YOLOv8 model (Ultralytics). The model performance was evaluated using accuracy, recall, precision, and F<sub>1</sub>-scores.</p><p><strong>Results: </strong>The adapted YOLOv8 model demonstrated a global accuracy of 0.70 and a macro F<sub>1</sub>-score of 0.65. It was more effective in identifying nonobesity (F<sub>1</sub>-score of 0.77) than obesity (F<sub>1</sub>-score of 0.53). This moderate level of accuracy highlights the potential and challenges in using vocal biomarkers for obesity detection.</p><p><strong>Conclusions: </strong>While the study shows promise in the field of voice-based medical diagnostics for obesity, it faces limitations such as reliance on self-reported BMI data and a small, homogenous sample size. These factors, coupled with variability in recording quality, necessitate further research with more robust methodologies and diverse samples to enhance the validity of this novel approach. The findings lay a foundational step for future investigations in using voice as a noninvasive biomarker for obesity detection.</p>","PeriodicalId":73551,"journal":{"name":"JMIR AI","volume":"3 ","pages":"e54885"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310637/pdf/","citationCount":"0","resultStr":"{\"title\":\"Use of Deep Neural Networks to Predict Obesity With Short Audio Recordings: Development and Usability Study.\",\"authors\":\"Jingyi Huang, Peiqi Guo, Sheng Zhang, Mengmeng Ji, Ruopeng An\",\"doi\":\"10.2196/54885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The escalating global prevalence of obesity has necessitated the exploration of novel diagnostic approaches. Recent scientific inquiries have indicated potential alterations in voice characteristics associated with obesity, suggesting the feasibility of using voice as a noninvasive biomarker for obesity detection.</p><p><strong>Objective: </strong>This study aims to use deep neural networks to predict obesity status through the analysis of short audio recordings, investigating the relationship between vocal characteristics and obesity.</p><p><strong>Methods: </strong>A pilot study was conducted with 696 participants, using self-reported BMI to classify individuals into obesity and nonobesity groups. Audio recordings of participants reading a short script were transformed into spectrograms and analyzed using an adapted YOLOv8 model (Ultralytics). The model performance was evaluated using accuracy, recall, precision, and F<sub>1</sub>-scores.</p><p><strong>Results: </strong>The adapted YOLOv8 model demonstrated a global accuracy of 0.70 and a macro F<sub>1</sub>-score of 0.65. It was more effective in identifying nonobesity (F<sub>1</sub>-score of 0.77) than obesity (F<sub>1</sub>-score of 0.53). This moderate level of accuracy highlights the potential and challenges in using vocal biomarkers for obesity detection.</p><p><strong>Conclusions: </strong>While the study shows promise in the field of voice-based medical diagnostics for obesity, it faces limitations such as reliance on self-reported BMI data and a small, homogenous sample size. These factors, coupled with variability in recording quality, necessitate further research with more robust methodologies and diverse samples to enhance the validity of this novel approach. The findings lay a foundational step for future investigations in using voice as a noninvasive biomarker for obesity detection.</p>\",\"PeriodicalId\":73551,\"journal\":{\"name\":\"JMIR AI\",\"volume\":\"3 \",\"pages\":\"e54885\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310637/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMIR AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2196/54885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/54885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:全球肥胖症发病率不断上升,因此有必要探索新的诊断方法。最近的科学调查表明,与肥胖相关的声音特征可能会发生变化,这表明将声音作为肥胖检测的非侵入性生物标志物是可行的:本研究旨在利用深度神经网络通过分析简短的音频记录来预测肥胖状况,研究声音特征与肥胖之间的关系:方法:对 696 名参与者进行了试点研究,使用自我报告的体重指数将个体分为肥胖组和非肥胖组。参与者朗读短文的录音被转换成频谱图,并使用改编的 YOLOv8 模型(Ultralytics)进行分析。使用准确度、召回率、精确度和 F1 分数对模型性能进行了评估:改编后的 YOLOv8 模型的总体准确率为 0.70,宏观 F1 分数为 0.65。与肥胖(F1 分数为 0.53)相比,该模型在识别非肥胖(F1 分数为 0.77)方面更为有效。这种中等程度的准确性凸显了使用声乐生物标记物检测肥胖的潜力和挑战:虽然这项研究在基于声音的肥胖症医疗诊断领域前景广阔,但它也面临着一些局限性,如依赖于自我报告的体重指数数据,样本量小且单一。这些因素加上录音质量的差异,使得有必要采用更可靠的方法和多样化的样本进行进一步研究,以提高这种新方法的有效性。这些研究结果为今后利用声音作为肥胖检测的无创生物标志物的研究奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Use of Deep Neural Networks to Predict Obesity With Short Audio Recordings: Development and Usability Study.

Background: The escalating global prevalence of obesity has necessitated the exploration of novel diagnostic approaches. Recent scientific inquiries have indicated potential alterations in voice characteristics associated with obesity, suggesting the feasibility of using voice as a noninvasive biomarker for obesity detection.

Objective: This study aims to use deep neural networks to predict obesity status through the analysis of short audio recordings, investigating the relationship between vocal characteristics and obesity.

Methods: A pilot study was conducted with 696 participants, using self-reported BMI to classify individuals into obesity and nonobesity groups. Audio recordings of participants reading a short script were transformed into spectrograms and analyzed using an adapted YOLOv8 model (Ultralytics). The model performance was evaluated using accuracy, recall, precision, and F1-scores.

Results: The adapted YOLOv8 model demonstrated a global accuracy of 0.70 and a macro F1-score of 0.65. It was more effective in identifying nonobesity (F1-score of 0.77) than obesity (F1-score of 0.53). This moderate level of accuracy highlights the potential and challenges in using vocal biomarkers for obesity detection.

Conclusions: While the study shows promise in the field of voice-based medical diagnostics for obesity, it faces limitations such as reliance on self-reported BMI data and a small, homogenous sample size. These factors, coupled with variability in recording quality, necessitate further research with more robust methodologies and diverse samples to enhance the validity of this novel approach. The findings lay a foundational step for future investigations in using voice as a noninvasive biomarker for obesity detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ensuring Appropriate Representation in Artificial Intelligence-Generated Medical Imagery: Protocol for a Methodological Approach to Address Skin Tone Bias. How Explainable Artificial Intelligence Can Increase or Decrease Clinicians' Trust in AI Applications in Health Care: Systematic Review. Targeting COVID-19 and Human Resources for Health News Information Extraction: Algorithm Development and Validation. Understanding AI's Role in Endometriosis Patient Education and Evaluating Its Information and Accuracy: Systematic Review. Identifying Marijuana Use Behaviors Among Youth Experiencing Homelessness Using a Machine Learning-Based Framework: Development and Evaluation Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1