从再生干细胞中提取的外泌体通过抗氧化剂的转移激活 NLRP3 炎症体和核浆细胞的嗜热症。

IF 4.4 4区 医学 Q2 CELL & TISSUE ENGINEERING Tissue engineering and regenerative medicine Pub Date : 2024-10-01 Epub Date: 2024-07-26 DOI:10.1007/s13770-024-00663-z
Shuai Peng, Xiangyang Liu, Lei Chang, Bin Liu, Mingyan Zhang, Yan Mao, Xiongjie Shen
{"title":"从再生干细胞中提取的外泌体通过抗氧化剂的转移激活 NLRP3 炎症体和核浆细胞的嗜热症。","authors":"Shuai Peng, Xiangyang Liu, Lei Chang, Bin Liu, Mingyan Zhang, Yan Mao, Xiongjie Shen","doi":"10.1007/s13770-024-00663-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Accumulating evidence supports the potential of exosomes as a promising therapeutic approach for intervertebral disc degeneration (IDD). Nevertheless, enhancing the efficiency of exosome treatment remains an urgent concern. This study investigated the impact of quercetin on the characteristics of mesenchymal stem cells (MSCs) and their released exosomes.</p><p><strong>Methods: </strong>Exosomes were obtained from quercetin pre-treated MSCs and quantified for the production based on nanoparticle tracking and western blot analysis. The molecules involved in the secretion and cargo sorting of exosomes were investigated using western blot and immunofluorescence analysis. Based on the in vitro biological analysis and in vivo histological analysis, the effects of exosomes derived from conventional or quercetin-treated MSCs on nucleus pulposus (NP) cells were compared.</p><p><strong>Results: </strong>A significant enhancement in the production and transportation efficiency of exosomes was observed in quercetin-treated MSCs. Moreover, the exosomes derived from quercetin-treated MSCs exhibited a greater abundance of antioxidant proteins, specifically superoxide dismutase 1 (SOD1), which inhibit the activation of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome in NP cells. Through in vitro and in vivo experiments, it was elucidated that exosomes derived from quercetin-treated MSCs possessed enhanced anti-inflammatory and antioxidant properties.</p><p><strong>Conclusion: </strong>Collectively, our research underscores an optimized therapeutic strategy for IDD utilizing MSC-derived exosomes, thereby augmenting the efficacy of exosomes in intervertebral disc regeneration.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"1061-1077"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11416441/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exosomes Derived from Rejuvenated Stem Cells Inactivate NLRP3 Inflammasome and Pyroptosis of Nucleus Pulposus Cells via the Transfer of Antioxidants.\",\"authors\":\"Shuai Peng, Xiangyang Liu, Lei Chang, Bin Liu, Mingyan Zhang, Yan Mao, Xiongjie Shen\",\"doi\":\"10.1007/s13770-024-00663-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Accumulating evidence supports the potential of exosomes as a promising therapeutic approach for intervertebral disc degeneration (IDD). Nevertheless, enhancing the efficiency of exosome treatment remains an urgent concern. This study investigated the impact of quercetin on the characteristics of mesenchymal stem cells (MSCs) and their released exosomes.</p><p><strong>Methods: </strong>Exosomes were obtained from quercetin pre-treated MSCs and quantified for the production based on nanoparticle tracking and western blot analysis. The molecules involved in the secretion and cargo sorting of exosomes were investigated using western blot and immunofluorescence analysis. Based on the in vitro biological analysis and in vivo histological analysis, the effects of exosomes derived from conventional or quercetin-treated MSCs on nucleus pulposus (NP) cells were compared.</p><p><strong>Results: </strong>A significant enhancement in the production and transportation efficiency of exosomes was observed in quercetin-treated MSCs. Moreover, the exosomes derived from quercetin-treated MSCs exhibited a greater abundance of antioxidant proteins, specifically superoxide dismutase 1 (SOD1), which inhibit the activation of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome in NP cells. Through in vitro and in vivo experiments, it was elucidated that exosomes derived from quercetin-treated MSCs possessed enhanced anti-inflammatory and antioxidant properties.</p><p><strong>Conclusion: </strong>Collectively, our research underscores an optimized therapeutic strategy for IDD utilizing MSC-derived exosomes, thereby augmenting the efficacy of exosomes in intervertebral disc regeneration.</p>\",\"PeriodicalId\":23126,\"journal\":{\"name\":\"Tissue engineering and regenerative medicine\",\"volume\":\" \",\"pages\":\"1061-1077\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11416441/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue engineering and regenerative medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13770-024-00663-z\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering and regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13770-024-00663-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

背景:越来越多的证据表明,外泌体有望成为治疗椎间盘退变(IDD)的一种有效方法。然而,提高外泌体治疗的效率仍是一个亟待解决的问题。本研究探讨了槲皮素对间充质干细胞(MSCs)及其释放的外泌体特性的影响:方法:从经槲皮素预处理的间充质干细胞中获取外泌体,并根据纳米颗粒追踪和Western印迹分析对外泌体的产生进行定量。利用 Western 印迹和免疫荧光分析研究了参与外泌体分泌和货物分拣的分子。根据体外生物学分析和体内组织学分析,比较了传统间充质干细胞或槲皮素处理的间充质干细胞产生的外泌体对髓核细胞的影响:结果:在槲皮素处理的间充质干细胞中观察到外泌体的产生和运输效率明显提高。此外,经槲皮素处理的间充质干细胞产生的外泌体含有更多的抗氧化蛋白,特别是超氧化物歧化酶1(SOD1),它能抑制NP细胞中NOD样受体热蛋白域相关蛋白3(NLRP3)炎性体的激活。通过体外和体内实验,我们发现槲皮素处理的间充质干细胞产生的外泌体具有更强的抗炎和抗氧化特性:总之,我们的研究强调了利用间充质干细胞衍生的外泌体治疗IDD的优化策略,从而增强了外泌体在椎间盘再生中的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exosomes Derived from Rejuvenated Stem Cells Inactivate NLRP3 Inflammasome and Pyroptosis of Nucleus Pulposus Cells via the Transfer of Antioxidants.

Background: Accumulating evidence supports the potential of exosomes as a promising therapeutic approach for intervertebral disc degeneration (IDD). Nevertheless, enhancing the efficiency of exosome treatment remains an urgent concern. This study investigated the impact of quercetin on the characteristics of mesenchymal stem cells (MSCs) and their released exosomes.

Methods: Exosomes were obtained from quercetin pre-treated MSCs and quantified for the production based on nanoparticle tracking and western blot analysis. The molecules involved in the secretion and cargo sorting of exosomes were investigated using western blot and immunofluorescence analysis. Based on the in vitro biological analysis and in vivo histological analysis, the effects of exosomes derived from conventional or quercetin-treated MSCs on nucleus pulposus (NP) cells were compared.

Results: A significant enhancement in the production and transportation efficiency of exosomes was observed in quercetin-treated MSCs. Moreover, the exosomes derived from quercetin-treated MSCs exhibited a greater abundance of antioxidant proteins, specifically superoxide dismutase 1 (SOD1), which inhibit the activation of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome in NP cells. Through in vitro and in vivo experiments, it was elucidated that exosomes derived from quercetin-treated MSCs possessed enhanced anti-inflammatory and antioxidant properties.

Conclusion: Collectively, our research underscores an optimized therapeutic strategy for IDD utilizing MSC-derived exosomes, thereby augmenting the efficacy of exosomes in intervertebral disc regeneration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue engineering and regenerative medicine
Tissue engineering and regenerative medicine CELL & TISSUE ENGINEERING-ENGINEERING, BIOMEDICAL
CiteScore
6.80
自引率
5.60%
发文量
83
审稿时长
6-12 weeks
期刊介绍: Tissue Engineering and Regenerative Medicine (Tissue Eng Regen Med, TERM), the official journal of the Korean Tissue Engineering and Regenerative Medicine Society, is a publication dedicated to providing research- based solutions to issues related to human diseases. This journal publishes articles that report substantial information and original findings on tissue engineering, medical biomaterials, cells therapy, stem cell biology and regenerative medicine.
期刊最新文献
Determining Which Hydrostatic Pressure Regimes Promote Osteogenesis in Human Mesenchymal Stem Cells. Collagen-Heparin-FGF2-VEGF Scaffolds Induce a Regenerative Gene Expression Profile in a Fetal Sheep Wound Model. Macrophage Polarization: A Novel Target and Strategy for Pathological Scarring. Perfusion Bioreactor Conditioning of Small-diameter Plant-based Vascular Grafts. Exosomes-Shuttled lncRNA SNHG7 by Bone Marrow Mesenchymal Stem Cells Alleviates Osteoarthritis Through Targeting miR-485-5p/FSP1 Axis-Mediated Chondrocytes Ferroptosis and Inflammation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1