作者更正:水稻雄性配子发生过程中的 DNA 甲基化重塑及其功能影响

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Genome Biology Pub Date : 2024-07-27 DOI:10.1186/s13059-024-03344-1
Xue Li, Bo Zhu, Yue Lu, Feng Zhao, Qian Liu, Jiahao Wang, Miaomiao Ye, Siyuan Chen, Junwei Nie, Lizhong Xiong, Yu Zhao, Changyin Wu, Dao-Xiu Zhou
{"title":"作者更正:水稻雄性配子发生过程中的 DNA 甲基化重塑及其功能影响","authors":"Xue Li, Bo Zhu, Yue Lu, Feng Zhao, Qian Liu, Jiahao Wang, Miaomiao Ye, Siyuan Chen, Junwei Nie, Lizhong Xiong, Yu Zhao, Changyin Wu, Dao-Xiu Zhou","doi":"10.1186/s13059-024-03344-1","DOIUrl":null,"url":null,"abstract":"<p><b>Author Correction: Genome Biol 25, 84 (2024)</b></p><p><b>https://doi.org/10.1186/s13059-024-03222-w</b></p><br/><p>Following publication of the original article [1], the authors identified an error in Fig. 2. In Fig. 2B, a wild type pollen picture was wrongly used to represent cmt3b pollens that in fact are of wild type phenotype.</p><p>The incorrect and correct Fig. 2 is published in this correction article and the original article [1] has been updated.</p><p>Incorrect figure:</p><br/><figure><figcaption><b data-test=\"figure-caption-text\">Fig. 2</b></figcaption><picture><source srcset=\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13059-024-03344-1/MediaObjects/13059_2024_3344_Fig1_HTML.png?as=webp\" type=\"image/webp\"/><img alt=\"figure 1\" aria-describedby=\"Fig1\" height=\"989\" loading=\"lazy\" src=\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13059-024-03344-1/MediaObjects/13059_2024_3344_Fig1_HTML.png\" width=\"685\"/></picture><p>Effects of <i>cmt3a</i> and <i>cmt3b</i> mutations on DNA methylation in meiocyte, microspore and sperm. <b>a</b> Transcript levels in FPKM of rice CMT3a and CMT3b in seedling (Se), roots (Ro), meiocyte (Me), unicellular microspore (UM), sperm (S), egg (E), zygote (Z), endosperm nuclei (En, 1.5 days after fertilization) and globular embryo (GE, 3 days after fertilization) from RNA-seq data. The sperm (Kit-S) in Kitaake background was reported by Anderson et al., (2013). <b>b</b> The pollen grains of wild type and <i>cmt3a</i> and <i>cmt3b</i> mutants were I2-KI stained. Bars = 50 μm. <b>c</b> Violin plots comparing overall cytosine methylation levels of wild type and <i>cmt3a</i> and <i>cmt3b</i> mutant meiocyte (Me), unicellular microspore (UM) and sperm (S). The average methylation levels (white dots) and median values (black bars) in transposable elements (TE) are shown. Values of the methylomes are averages from the two replicates. <b>d</b> Number of differential methylated regions (DMR) in <i>cmt3a</i> and <i>cmt3b</i> relative to wild type. Relative portions in TE (&gt; 500 bp), TEG, gene, and Intergenic regions are indicated by different colors. <b>e</b> Venn diagrams showing overlapping of hypo-CHG DMRs in <i>cmt3a</i> and <i>cmt3b</i> meiocyte (left) and sperm (right) relative to wild type cells. <b>f</b> Box plots of DNA methylation levels of hypo-CHG DMRs in meiocyte (Me) versus microspore (UM) (upper) and sperm (S) relative to microspore (UM) (lower) in wild type, <i>cmt3a</i> (3a) and <i>cmt3b</i> (3b) cells. The significance was calculated with multiple comparison tests. Different letters on top of the bars indicate a significant difference (<i>p</i> &lt; 0.05). <b>g</b> Genome Browser screen captures showing high CHG methylation sites in microspore relative to meiocyte and sperm decreased in cmt3b mutants (highlighted by grey)</p><span>Full size image</span><svg aria-hidden=\"true\" focusable=\"false\" height=\"16\" role=\"img\" width=\"16\"><use xlink:href=\"#icon-eds-i-chevron-right-small\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"></use></svg></figure><p>Correct figure:</p><figure><figcaption><b data-test=\"figure-caption-text\">Fig. 2</b></figcaption><picture><source srcset=\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13059-024-03344-1/MediaObjects/13059_2024_3344_Fig2_HTML.png?as=webp\" type=\"image/webp\"/><img alt=\"figure 2\" aria-describedby=\"Fig2\" height=\"983\" loading=\"lazy\" src=\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13059-024-03344-1/MediaObjects/13059_2024_3344_Fig2_HTML.png\" width=\"685\"/></picture><p>Effects of <i>cmt3a</i> and <i>cmt3b</i> mutations on DNA methylation in meiocyte, microspore and sperm. <b>a</b> Transcript levels in FPKM of rice CMT3a and CMT3b in seedling (Se), roots (Ro), meiocyte (Me), unicellular microspore (UM), sperm (S), egg (E), zygote (Z), endosperm nuclei (En, 1.5 days after fertilization) and globular embryo (GE, 3 days after fertilization) from RNA-seq data. The sperm (Kit-S) in Kitaake background was reported by Anderson et al., (2013). <b>b</b> The pollen grains of wild type and <i>cmt3a</i> and <i>cmt3b</i> mutants were I2-KI stained. Bars = 50 μm. <b>c</b> Violin plots comparing overall cytosine methylation levels of wild type and <i>cmt3a</i> and <i>cmt3b</i> mutant meiocyte (Me), unicellular microspore (UM) and sperm (S). The average methylation levels (white dots) and median values (black bars) in transposable elements (TE) are shown. Values of the methylomes are averages from the two replicates. <b>d</b> Number of differential methylated regions (DMR) in <i>cmt3a</i> and <i>cmt3b</i> relative to wild type. Relative portions in TE (&gt; 500 bp), TEG, gene, and Intergenic regions are indicated by different colors. <b>e</b> Venn diagrams showing overlapping of hypo-CHG DMRs in <i>cmt3a</i> and <i>cmt3b</i> meiocyte (left) and sperm (right) relative to wild type cells. <b>f</b> Box plots of DNA methylation levels of hypo-CHG DMRs in meiocyte (Me) versus microspore (UM) (upper) and sperm (S) relative to microspore (UM) (lower) in wild type, <i>cmt3a</i> (3a) and <i>cmt3b</i> (3b) cells. The significance was calculated with multiple comparison tests. Different letters on top of the bars indicate a significant difference (<i>p</i> &lt; 0.05). <b>g</b> Genome Browser screen captures showing high CHG methylation sites in microspore relative to meiocyte and sperm decreased in cmt3b mutants (highlighted by grey)</p><span>Full size image</span><svg aria-hidden=\"true\" focusable=\"false\" height=\"16\" role=\"img\" width=\"16\"><use xlink:href=\"#icon-eds-i-chevron-right-small\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"></use></svg></figure><ol data-track-component=\"outbound reference\" data-track-context=\"references section\"><li data-counter=\"1.\"><p>Li X, Zhu B, Lu Y, et al. DNA methylation remodeling and the functional implication during male gametogenesis in rice. Genome Biol. 2024;25:84. https://doi.org/10.1186/s13059-024-03222-w.</p><p>Article CAS PubMed PubMed Central Google Scholar </p></li></ol><p>Download references<svg aria-hidden=\"true\" focusable=\"false\" height=\"16\" role=\"img\" width=\"16\"><use xlink:href=\"#icon-eds-i-download-medium\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"></use></svg></p><span>Author notes</span><ol><li><p>Xue Li and Bo Zhu contributed equally to this work.</p></li></ol><h3>Authors and Affiliations</h3><ol><li><p>National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China</p><p>Xue Li, Bo Zhu, Feng Zhao, Qian Liu, Jiahao Wang, Miaomiao Ye, Siyuan Chen, Lizhong Xiong, Yu Zhao, Changyin Wu &amp; Dao-Xiu Zhou</p></li><li><p>Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China</p><p>Yue Lu</p></li><li><p>Vazyme Biotech Co., Ltd, Nanjing, 210000, China</p><p>Junwei Nie</p></li><li><p>Institute of Plant Science Paris-Saclay (IPS2), CNRS, INRAE, Université Paris-Saclay, 91405, Orsay, France</p><p>Dao-Xiu Zhou</p></li></ol><span>Authors</span><ol><li><span>Xue Li</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Bo Zhu</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Yue Lu</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Feng Zhao</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Qian Liu</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Jiahao Wang</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Miaomiao Ye</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Siyuan Chen</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Junwei Nie</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Lizhong Xiong</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Yu Zhao</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Changyin Wu</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Dao-Xiu Zhou</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li></ol><h3>Corresponding author</h3><p>Correspondence to Dao-Xiu Zhou.</p><p><b>Open Access</b> This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.</p>\n<p>Reprints and permissions</p><img alt=\"Check for updates. Verify currency and authenticity via CrossMark\" height=\"81\" loading=\"lazy\" src=\"\" width=\"57\"/><h3>Cite this article</h3><p>Li, X., Zhu, B., Lu, Y. <i>et al.</i> Author Correction: DNA methylation remodeling and the functional implication during male gametogenesis in rice. <i>Genome Biol</i> <b>25</b>, 196 (2024). https://doi.org/10.1186/s13059-024-03344-1</p><p>Download citation<svg aria-hidden=\"true\" focusable=\"false\" height=\"16\" role=\"img\" width=\"16\"><use xlink:href=\"#icon-eds-i-download-medium\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"></use></svg></p><ul data-test=\"publication-history\"><li><p>Published<span>: </span><span><time datetime=\"2024-07-27\">27 July 2024</time></span></p></li><li><p>DOI</abbr><span>: </span><span>https://doi.org/10.1186/s13059-024-03344-1</span></p></li></ul><h3>Share this article</h3><p>Anyone you share the following link with will be able to read this content:</p><button data-track=\"click\" data-track-action=\"get shareable link\" data-track-external=\"\" data-track-label=\"button\" type=\"button\">Get shareable link</button><p>Sorry, a shareable link is not currently available for this article.</p><p data-track=\"click\" data-track-action=\"select share url\" data-track-label=\"button\"></p><button data-track=\"click\" data-track-action=\"copy share url\" data-track-external=\"\" data-track-label=\"button\" type=\"button\">Copy to clipboard</button><p> Provided by the Springer Nature SharedIt content-sharing initiative </p>","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"56 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Author Correction: DNA methylation remodeling and the functional implication during male gametogenesis in rice\",\"authors\":\"Xue Li, Bo Zhu, Yue Lu, Feng Zhao, Qian Liu, Jiahao Wang, Miaomiao Ye, Siyuan Chen, Junwei Nie, Lizhong Xiong, Yu Zhao, Changyin Wu, Dao-Xiu Zhou\",\"doi\":\"10.1186/s13059-024-03344-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Author Correction: Genome Biol 25, 84 (2024)</b></p><p><b>https://doi.org/10.1186/s13059-024-03222-w</b></p><br/><p>Following publication of the original article [1], the authors identified an error in Fig. 2. In Fig. 2B, a wild type pollen picture was wrongly used to represent cmt3b pollens that in fact are of wild type phenotype.</p><p>The incorrect and correct Fig. 2 is published in this correction article and the original article [1] has been updated.</p><p>Incorrect figure:</p><br/><figure><figcaption><b data-test=\\\"figure-caption-text\\\">Fig. 2</b></figcaption><picture><source srcset=\\\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13059-024-03344-1/MediaObjects/13059_2024_3344_Fig1_HTML.png?as=webp\\\" type=\\\"image/webp\\\"/><img alt=\\\"figure 1\\\" aria-describedby=\\\"Fig1\\\" height=\\\"989\\\" loading=\\\"lazy\\\" src=\\\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13059-024-03344-1/MediaObjects/13059_2024_3344_Fig1_HTML.png\\\" width=\\\"685\\\"/></picture><p>Effects of <i>cmt3a</i> and <i>cmt3b</i> mutations on DNA methylation in meiocyte, microspore and sperm. <b>a</b> Transcript levels in FPKM of rice CMT3a and CMT3b in seedling (Se), roots (Ro), meiocyte (Me), unicellular microspore (UM), sperm (S), egg (E), zygote (Z), endosperm nuclei (En, 1.5 days after fertilization) and globular embryo (GE, 3 days after fertilization) from RNA-seq data. The sperm (Kit-S) in Kitaake background was reported by Anderson et al., (2013). <b>b</b> The pollen grains of wild type and <i>cmt3a</i> and <i>cmt3b</i> mutants were I2-KI stained. Bars = 50 μm. <b>c</b> Violin plots comparing overall cytosine methylation levels of wild type and <i>cmt3a</i> and <i>cmt3b</i> mutant meiocyte (Me), unicellular microspore (UM) and sperm (S). The average methylation levels (white dots) and median values (black bars) in transposable elements (TE) are shown. Values of the methylomes are averages from the two replicates. <b>d</b> Number of differential methylated regions (DMR) in <i>cmt3a</i> and <i>cmt3b</i> relative to wild type. Relative portions in TE (&gt; 500 bp), TEG, gene, and Intergenic regions are indicated by different colors. <b>e</b> Venn diagrams showing overlapping of hypo-CHG DMRs in <i>cmt3a</i> and <i>cmt3b</i> meiocyte (left) and sperm (right) relative to wild type cells. <b>f</b> Box plots of DNA methylation levels of hypo-CHG DMRs in meiocyte (Me) versus microspore (UM) (upper) and sperm (S) relative to microspore (UM) (lower) in wild type, <i>cmt3a</i> (3a) and <i>cmt3b</i> (3b) cells. The significance was calculated with multiple comparison tests. Different letters on top of the bars indicate a significant difference (<i>p</i> &lt; 0.05). <b>g</b> Genome Browser screen captures showing high CHG methylation sites in microspore relative to meiocyte and sperm decreased in cmt3b mutants (highlighted by grey)</p><span>Full size image</span><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"16\\\" role=\\\"img\\\" width=\\\"16\\\"><use xlink:href=\\\"#icon-eds-i-chevron-right-small\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"></use></svg></figure><p>Correct figure:</p><figure><figcaption><b data-test=\\\"figure-caption-text\\\">Fig. 2</b></figcaption><picture><source srcset=\\\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13059-024-03344-1/MediaObjects/13059_2024_3344_Fig2_HTML.png?as=webp\\\" type=\\\"image/webp\\\"/><img alt=\\\"figure 2\\\" aria-describedby=\\\"Fig2\\\" height=\\\"983\\\" loading=\\\"lazy\\\" src=\\\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13059-024-03344-1/MediaObjects/13059_2024_3344_Fig2_HTML.png\\\" width=\\\"685\\\"/></picture><p>Effects of <i>cmt3a</i> and <i>cmt3b</i> mutations on DNA methylation in meiocyte, microspore and sperm. <b>a</b> Transcript levels in FPKM of rice CMT3a and CMT3b in seedling (Se), roots (Ro), meiocyte (Me), unicellular microspore (UM), sperm (S), egg (E), zygote (Z), endosperm nuclei (En, 1.5 days after fertilization) and globular embryo (GE, 3 days after fertilization) from RNA-seq data. The sperm (Kit-S) in Kitaake background was reported by Anderson et al., (2013). <b>b</b> The pollen grains of wild type and <i>cmt3a</i> and <i>cmt3b</i> mutants were I2-KI stained. Bars = 50 μm. <b>c</b> Violin plots comparing overall cytosine methylation levels of wild type and <i>cmt3a</i> and <i>cmt3b</i> mutant meiocyte (Me), unicellular microspore (UM) and sperm (S). The average methylation levels (white dots) and median values (black bars) in transposable elements (TE) are shown. Values of the methylomes are averages from the two replicates. <b>d</b> Number of differential methylated regions (DMR) in <i>cmt3a</i> and <i>cmt3b</i> relative to wild type. Relative portions in TE (&gt; 500 bp), TEG, gene, and Intergenic regions are indicated by different colors. <b>e</b> Venn diagrams showing overlapping of hypo-CHG DMRs in <i>cmt3a</i> and <i>cmt3b</i> meiocyte (left) and sperm (right) relative to wild type cells. <b>f</b> Box plots of DNA methylation levels of hypo-CHG DMRs in meiocyte (Me) versus microspore (UM) (upper) and sperm (S) relative to microspore (UM) (lower) in wild type, <i>cmt3a</i> (3a) and <i>cmt3b</i> (3b) cells. The significance was calculated with multiple comparison tests. Different letters on top of the bars indicate a significant difference (<i>p</i> &lt; 0.05). <b>g</b> Genome Browser screen captures showing high CHG methylation sites in microspore relative to meiocyte and sperm decreased in cmt3b mutants (highlighted by grey)</p><span>Full size image</span><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"16\\\" role=\\\"img\\\" width=\\\"16\\\"><use xlink:href=\\\"#icon-eds-i-chevron-right-small\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"></use></svg></figure><ol data-track-component=\\\"outbound reference\\\" data-track-context=\\\"references section\\\"><li data-counter=\\\"1.\\\"><p>Li X, Zhu B, Lu Y, et al. DNA methylation remodeling and the functional implication during male gametogenesis in rice. Genome Biol. 2024;25:84. https://doi.org/10.1186/s13059-024-03222-w.</p><p>Article CAS PubMed PubMed Central Google Scholar </p></li></ol><p>Download references<svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"16\\\" role=\\\"img\\\" width=\\\"16\\\"><use xlink:href=\\\"#icon-eds-i-download-medium\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"></use></svg></p><span>Author notes</span><ol><li><p>Xue Li and Bo Zhu contributed equally to this work.</p></li></ol><h3>Authors and Affiliations</h3><ol><li><p>National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China</p><p>Xue Li, Bo Zhu, Feng Zhao, Qian Liu, Jiahao Wang, Miaomiao Ye, Siyuan Chen, Lizhong Xiong, Yu Zhao, Changyin Wu &amp; Dao-Xiu Zhou</p></li><li><p>Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China</p><p>Yue Lu</p></li><li><p>Vazyme Biotech Co., Ltd, Nanjing, 210000, China</p><p>Junwei Nie</p></li><li><p>Institute of Plant Science Paris-Saclay (IPS2), CNRS, INRAE, Université Paris-Saclay, 91405, Orsay, France</p><p>Dao-Xiu Zhou</p></li></ol><span>Authors</span><ol><li><span>Xue Li</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Bo Zhu</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Yue Lu</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Feng Zhao</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Qian Liu</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Jiahao Wang</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Miaomiao Ye</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Siyuan Chen</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Junwei Nie</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Lizhong Xiong</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Yu Zhao</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Changyin Wu</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Dao-Xiu Zhou</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li></ol><h3>Corresponding author</h3><p>Correspondence to Dao-Xiu Zhou.</p><p><b>Open Access</b> This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.</p>\\n<p>Reprints and permissions</p><img alt=\\\"Check for updates. Verify currency and authenticity via CrossMark\\\" height=\\\"81\\\" loading=\\\"lazy\\\" src=\\\"\\\" width=\\\"57\\\"/><h3>Cite this article</h3><p>Li, X., Zhu, B., Lu, Y. <i>et al.</i> Author Correction: DNA methylation remodeling and the functional implication during male gametogenesis in rice. <i>Genome Biol</i> <b>25</b>, 196 (2024). https://doi.org/10.1186/s13059-024-03344-1</p><p>Download citation<svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"16\\\" role=\\\"img\\\" width=\\\"16\\\"><use xlink:href=\\\"#icon-eds-i-download-medium\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"></use></svg></p><ul data-test=\\\"publication-history\\\"><li><p>Published<span>: </span><span><time datetime=\\\"2024-07-27\\\">27 July 2024</time></span></p></li><li><p>DOI</abbr><span>: </span><span>https://doi.org/10.1186/s13059-024-03344-1</span></p></li></ul><h3>Share this article</h3><p>Anyone you share the following link with will be able to read this content:</p><button data-track=\\\"click\\\" data-track-action=\\\"get shareable link\\\" data-track-external=\\\"\\\" data-track-label=\\\"button\\\" type=\\\"button\\\">Get shareable link</button><p>Sorry, a shareable link is not currently available for this article.</p><p data-track=\\\"click\\\" data-track-action=\\\"select share url\\\" data-track-label=\\\"button\\\"></p><button data-track=\\\"click\\\" data-track-action=\\\"copy share url\\\" data-track-external=\\\"\\\" data-track-label=\\\"button\\\" type=\\\"button\\\">Copy to clipboard</button><p> Provided by the Springer Nature SharedIt content-sharing initiative </p>\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-024-03344-1\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03344-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

作者更正:Genome Biol 25, 84 (2024)https://doi.org/10.1186/s13059-024-03222-wFollowing 原文[1]发表后,作者发现图 2 中有一处错误。在图 2B 中,野生型花粉图片被错误地用来表示 cmt3b 花粉,而实际上 cmt3b 花粉是野生型表型。错误和正确的图 2 在本更正文章中发表,原文 [1] 已更新。a RNA-seq 数据中水稻 CMT3a 和 CMT3b 在幼苗(Se)、根(Ro)、减数分裂细胞(Me)、单细胞小孢子(UM)、精子(S)、卵子(E)、合子(Z)、胚乳核(En,受精后 1.5 天)和球胚(GE,受精后 3 天)中的转录水平(FPKM)。b 野生型、cmt3a 和 cmt3b 突变体的花粉粒经 I2-KI 染色。c 比较野生型与 cmt3a 和 cmt3b 突变体减数分裂细胞(Me)、单细胞小孢子(UM)和精子(S)的整体胞嘧啶甲基化水平的 Violin 图。图中显示了转座元件(TE)的平均甲基化水平(白点)和中值(黑条)。d cmt3a 和 cmt3b 相对于野生型的差异甲基化区域(DMR)数量。e 文氏图显示了 cmt3a 和 cmt3b 减数分裂细胞(左)和精子(右)中相对于野生型细胞的低 CHG DMR 重叠。f 野生型、cmt3a(3a)和 cmt3b(3b)细胞中减数分裂细胞(Me)相对于小孢子(UM)(上图)和精子(S)相对于小孢子(UM)(下图)中低位-CHG DMRs 的 DNA 甲基化水平箱形图。显著性通过多重比较检验计算。g 基因组浏览器屏幕截图显示 cmt3b 突变体小孢子中高 CHG 甲基化位点相对于减数分裂细胞和精子减少(灰色突出显示)。a 水稻 CMT3a 和 CMT3b 在幼苗(Se)、根(Ro)、减数分裂细胞(Me)、单细胞小孢子(UM)、精子(S)、卵子(E)、合子(Z)、胚乳核(En,受精后 1.5 天)和球胚(GE,受精后 3 天)。b 野生型、cmt3a 和 cmt3b 突变体的花粉粒经 I2-KI 染色。c 比较野生型与 cmt3a 和 cmt3b 突变体减数分裂细胞(Me)、单细胞小孢子(UM)和精子(S)的整体胞嘧啶甲基化水平的 Violin 图。图中显示了转座元件(TE)的平均甲基化水平(白点)和中值(黑条)。d cmt3a 和 cmt3b 相对于野生型的差异甲基化区域(DMR)数量。e 文氏图显示了 cmt3a 和 cmt3b 减数分裂细胞(左)和精子(右)中相对于野生型细胞的低 CHG DMR 重叠。f 野生型、cmt3a(3a)和 cmt3b(3b)细胞中减数分裂细胞(Me)相对于小孢子(UM)(上图)和精子(S)相对于小孢子(UM)(下图)中低位-CHG DMRs 的 DNA 甲基化水平箱形图。显著性通过多重比较检验计算。g 基因组浏览器屏幕截图显示 cmt3b 突变体小孢子中高 CHG 甲基化位点相对于减数分裂细胞和精子减少(灰色突出显示)。Genome Biol. 2024;25:84. https://doi.org/10.1186/s13059-024-03222-w.Article CAS PubMed PubMed Central Google Scholar 下载参考文献作者简介李雪和朱波对本研究做出了同样的贡献。作者及工作单位华中农业大学作物遗传改良国家重点实验室,湖北洪山实验室,武汉,430070 李雪,朱波,赵峰,刘倩,王家豪,叶苗苗,陈思远,熊立忠,赵宇,吴昌银 &amp;周道秀 扬州大学农学院植物功能基因组学教育部重点实验室/江苏省农作物基因组学与分子育种重点实验室,扬州,225009 吕悦 维酶生物技术有限公司,扬州,225009
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Author Correction: DNA methylation remodeling and the functional implication during male gametogenesis in rice

Author Correction: Genome Biol 25, 84 (2024)

https://doi.org/10.1186/s13059-024-03222-w


Following publication of the original article [1], the authors identified an error in Fig. 2. In Fig. 2B, a wild type pollen picture was wrongly used to represent cmt3b pollens that in fact are of wild type phenotype.

The incorrect and correct Fig. 2 is published in this correction article and the original article [1] has been updated.

Incorrect figure:


Fig. 2
figure 1

Effects of cmt3a and cmt3b mutations on DNA methylation in meiocyte, microspore and sperm. a Transcript levels in FPKM of rice CMT3a and CMT3b in seedling (Se), roots (Ro), meiocyte (Me), unicellular microspore (UM), sperm (S), egg (E), zygote (Z), endosperm nuclei (En, 1.5 days after fertilization) and globular embryo (GE, 3 days after fertilization) from RNA-seq data. The sperm (Kit-S) in Kitaake background was reported by Anderson et al., (2013). b The pollen grains of wild type and cmt3a and cmt3b mutants were I2-KI stained. Bars = 50 μm. c Violin plots comparing overall cytosine methylation levels of wild type and cmt3a and cmt3b mutant meiocyte (Me), unicellular microspore (UM) and sperm (S). The average methylation levels (white dots) and median values (black bars) in transposable elements (TE) are shown. Values of the methylomes are averages from the two replicates. d Number of differential methylated regions (DMR) in cmt3a and cmt3b relative to wild type. Relative portions in TE (> 500 bp), TEG, gene, and Intergenic regions are indicated by different colors. e Venn diagrams showing overlapping of hypo-CHG DMRs in cmt3a and cmt3b meiocyte (left) and sperm (right) relative to wild type cells. f Box plots of DNA methylation levels of hypo-CHG DMRs in meiocyte (Me) versus microspore (UM) (upper) and sperm (S) relative to microspore (UM) (lower) in wild type, cmt3a (3a) and cmt3b (3b) cells. The significance was calculated with multiple comparison tests. Different letters on top of the bars indicate a significant difference (p < 0.05). g Genome Browser screen captures showing high CHG methylation sites in microspore relative to meiocyte and sperm decreased in cmt3b mutants (highlighted by grey)

Full size image

Correct figure:

Fig. 2
figure 2

Effects of cmt3a and cmt3b mutations on DNA methylation in meiocyte, microspore and sperm. a Transcript levels in FPKM of rice CMT3a and CMT3b in seedling (Se), roots (Ro), meiocyte (Me), unicellular microspore (UM), sperm (S), egg (E), zygote (Z), endosperm nuclei (En, 1.5 days after fertilization) and globular embryo (GE, 3 days after fertilization) from RNA-seq data. The sperm (Kit-S) in Kitaake background was reported by Anderson et al., (2013). b The pollen grains of wild type and cmt3a and cmt3b mutants were I2-KI stained. Bars = 50 μm. c Violin plots comparing overall cytosine methylation levels of wild type and cmt3a and cmt3b mutant meiocyte (Me), unicellular microspore (UM) and sperm (S). The average methylation levels (white dots) and median values (black bars) in transposable elements (TE) are shown. Values of the methylomes are averages from the two replicates. d Number of differential methylated regions (DMR) in cmt3a and cmt3b relative to wild type. Relative portions in TE (> 500 bp), TEG, gene, and Intergenic regions are indicated by different colors. e Venn diagrams showing overlapping of hypo-CHG DMRs in cmt3a and cmt3b meiocyte (left) and sperm (right) relative to wild type cells. f Box plots of DNA methylation levels of hypo-CHG DMRs in meiocyte (Me) versus microspore (UM) (upper) and sperm (S) relative to microspore (UM) (lower) in wild type, cmt3a (3a) and cmt3b (3b) cells. The significance was calculated with multiple comparison tests. Different letters on top of the bars indicate a significant difference (p < 0.05). g Genome Browser screen captures showing high CHG methylation sites in microspore relative to meiocyte and sperm decreased in cmt3b mutants (highlighted by grey)

Full size image
  1. Li X, Zhu B, Lu Y, et al. DNA methylation remodeling and the functional implication during male gametogenesis in rice. Genome Biol. 2024;25:84. https://doi.org/10.1186/s13059-024-03222-w.

    Article CAS PubMed PubMed Central Google Scholar

Download references

Author notes
  1. Xue Li and Bo Zhu contributed equally to this work.

Authors and Affiliations

  1. National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China

    Xue Li, Bo Zhu, Feng Zhao, Qian Liu, Jiahao Wang, Miaomiao Ye, Siyuan Chen, Lizhong Xiong, Yu Zhao, Changyin Wu & Dao-Xiu Zhou

  2. Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China

    Yue Lu

  3. Vazyme Biotech Co., Ltd, Nanjing, 210000, China

    Junwei Nie

  4. Institute of Plant Science Paris-Saclay (IPS2), CNRS, INRAE, Université Paris-Saclay, 91405, Orsay, France

    Dao-Xiu Zhou

Authors
  1. Xue LiView author publications

    You can also search for this author in PubMed Google Scholar

  2. Bo ZhuView author publications

    You can also search for this author in PubMed Google Scholar

  3. Yue LuView author publications

    You can also search for this author in PubMed Google Scholar

  4. Feng ZhaoView author publications

    You can also search for this author in PubMed Google Scholar

  5. Qian LiuView author publications

    You can also search for this author in PubMed Google Scholar

  6. Jiahao WangView author publications

    You can also search for this author in PubMed Google Scholar

  7. Miaomiao YeView author publications

    You can also search for this author in PubMed Google Scholar

  8. Siyuan ChenView author publications

    You can also search for this author in PubMed Google Scholar

  9. Junwei NieView author publications

    You can also search for this author in PubMed Google Scholar

  10. Lizhong XiongView author publications

    You can also search for this author in PubMed Google Scholar

  11. Yu ZhaoView author publications

    You can also search for this author in PubMed Google Scholar

  12. Changyin WuView author publications

    You can also search for this author in PubMed Google Scholar

  13. Dao-Xiu ZhouView author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Dao-Xiu Zhou.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhu, B., Lu, Y. et al. Author Correction: DNA methylation remodeling and the functional implication during male gametogenesis in rice. Genome Biol 25, 196 (2024). https://doi.org/10.1186/s13059-024-03344-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/s13059-024-03344-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
期刊最新文献
The genomic portrait of the Picene culture provides new insights into the Italic Iron Age and the legacy of the Roman Empire in Central Italy scStateDynamics: deciphering the drug-responsive tumor cell state dynamics by modeling single-cell level expression changes Considerations in the search for epistasis Transcription of a centromere-enriched retroelement and local retention of its RNA are significant features of the CENP-A chromatin landscape. VI-VS: calibrated identification of feature dependencies in single-cell multiomics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1