优化螺旋惯性微流体中粒子分离的计算模型:向增强生物传感和细胞分拣迈出的一步

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Advanced Theory and Simulations Pub Date : 2024-07-27 DOI:10.1002/adts.202301075
Julian Tristan Joshua Boland, Zhenxu Yang, Qiankun Yin, Xiaochen Liu, Zhejun Xu, Kien-Voon Kong, Daniele Vigolo, Ken-Tye Yong
{"title":"优化螺旋惯性微流体中粒子分离的计算模型:向增强生物传感和细胞分拣迈出的一步","authors":"Julian Tristan Joshua Boland,&nbsp;Zhenxu Yang,&nbsp;Qiankun Yin,&nbsp;Xiaochen Liu,&nbsp;Zhejun Xu,&nbsp;Kien-Voon Kong,&nbsp;Daniele Vigolo,&nbsp;Ken-Tye Yong","doi":"10.1002/adts.202301075","DOIUrl":null,"url":null,"abstract":"<p>Inertial microfluidics is essential for separating particles and cells, enabling numerous biomedical applications. Despite the simplicity of spiral microchannels, the lack of predictive models hampers real-world applications, highlighting the need for cost-effective computational tools. In this study, four novel data fitting models are developed using linear and power regression analyses to investigate how flow conditions influence particle behaviors within spiral microchannels. These models are rigorously tested under two different flow rates, focusing on a smaller particle representing <i>Salmonella</i> Typhimurium and a larger particle representing bacterial aggregates, aiming for effective separation and detection. A critical parameter, the sheath-to-sample flow rate ratio, is either interpolated or extrapolated using the microchannel's aspect ratios to predict particle separation. The models show strong agreement with experimental data, underscoring their predictability and efficiency. These insights suggest that further refinement of these models can significantly reduce research and development costs for advanced inertial microfluidic devices in biomedical applications. This work represents a crucial step towards establishing a robust computational framework, advancing inertial microfluidics towards practical biomedical applications.</p>","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"7 10","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adts.202301075","citationCount":"0","resultStr":"{\"title\":\"Computational Models for Optimizing Particle Separation in Spiral Inertial Microfluidics: A Step Toward Enhanced Biosensing and Cell Sorting\",\"authors\":\"Julian Tristan Joshua Boland,&nbsp;Zhenxu Yang,&nbsp;Qiankun Yin,&nbsp;Xiaochen Liu,&nbsp;Zhejun Xu,&nbsp;Kien-Voon Kong,&nbsp;Daniele Vigolo,&nbsp;Ken-Tye Yong\",\"doi\":\"10.1002/adts.202301075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Inertial microfluidics is essential for separating particles and cells, enabling numerous biomedical applications. Despite the simplicity of spiral microchannels, the lack of predictive models hampers real-world applications, highlighting the need for cost-effective computational tools. In this study, four novel data fitting models are developed using linear and power regression analyses to investigate how flow conditions influence particle behaviors within spiral microchannels. These models are rigorously tested under two different flow rates, focusing on a smaller particle representing <i>Salmonella</i> Typhimurium and a larger particle representing bacterial aggregates, aiming for effective separation and detection. A critical parameter, the sheath-to-sample flow rate ratio, is either interpolated or extrapolated using the microchannel's aspect ratios to predict particle separation. The models show strong agreement with experimental data, underscoring their predictability and efficiency. These insights suggest that further refinement of these models can significantly reduce research and development costs for advanced inertial microfluidic devices in biomedical applications. This work represents a crucial step towards establishing a robust computational framework, advancing inertial microfluidics towards practical biomedical applications.</p>\",\"PeriodicalId\":7219,\"journal\":{\"name\":\"Advanced Theory and Simulations\",\"volume\":\"7 10\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adts.202301075\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adts.202301075\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adts.202301075","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

惯性微流体技术对于分离颗粒和细胞至关重要,可实现众多生物医学应用。尽管螺旋微通道非常简单,但缺乏预测模型阻碍了实际应用,这凸显了对具有成本效益的计算工具的需求。本研究利用线性和幂回归分析开发了四种新型数据拟合模型,以研究流动条件如何影响螺旋微通道内的颗粒行为。这些模型在两种不同流速下进行了严格测试,重点测试了代表鼠伤寒沙门氏菌的较小颗粒和代表细菌聚集体的较大颗粒,旨在实现有效分离和检测。利用微通道的长宽比对关键参数--鞘与样品的流速比进行内推或外推,以预测颗粒分离情况。这些模型与实验数据非常吻合,突出了其可预测性和效率。这些见解表明,进一步完善这些模型可以大大降低生物医学应用中先进惯性微流控设备的研发成本。这项工作是建立强大计算框架的关键一步,将推动惯性微流体技术走向实际生物医学应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational Models for Optimizing Particle Separation in Spiral Inertial Microfluidics: A Step Toward Enhanced Biosensing and Cell Sorting

Inertial microfluidics is essential for separating particles and cells, enabling numerous biomedical applications. Despite the simplicity of spiral microchannels, the lack of predictive models hampers real-world applications, highlighting the need for cost-effective computational tools. In this study, four novel data fitting models are developed using linear and power regression analyses to investigate how flow conditions influence particle behaviors within spiral microchannels. These models are rigorously tested under two different flow rates, focusing on a smaller particle representing Salmonella Typhimurium and a larger particle representing bacterial aggregates, aiming for effective separation and detection. A critical parameter, the sheath-to-sample flow rate ratio, is either interpolated or extrapolated using the microchannel's aspect ratios to predict particle separation. The models show strong agreement with experimental data, underscoring their predictability and efficiency. These insights suggest that further refinement of these models can significantly reduce research and development costs for advanced inertial microfluidic devices in biomedical applications. This work represents a crucial step towards establishing a robust computational framework, advancing inertial microfluidics towards practical biomedical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
期刊最新文献
Machine-Learned Modeling for Accelerating Organic Solvent Design in Metal-Ion Batteries Topology Optimization Enabled High Performance and Easy-to-Fabricate Hybrid Photonic Crystals Pnictogen Atom Substitution to Modify the Electronic and Magnetic Properties of SiS2 Monolayer: A DFT Study Multifunctional Reconfigurable Vanadium Dioxide Integrated Metasurface for Reflection, Asymmetric Transmission and Cross-Polarization Conversion in Terahertz Region A Detailed First-Principles Study of the Structural, Elastic, Thermomechanical, and Optoelectronic Properties of Binary Rare-Earth Tritelluride NdTe3 (Adv. Theory Simul. 11/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1