制造添加低溶解钒的 CuAlVMg 高温形状记忆合金

IF 1.6 4区 材料科学 Q2 Materials Science Transactions of The Indian Institute of Metals Pub Date : 2024-07-26 DOI:10.1007/s12666-024-03408-7
Oktay Karaduman, Mustafa Boyrazli, Canan Aksu Canbay, İskender Özkul, Emrah Çelik, Güneş Başbağ
{"title":"制造添加低溶解钒的 CuAlVMg 高温形状记忆合金","authors":"Oktay Karaduman, Mustafa Boyrazli, Canan Aksu Canbay, İskender Özkul, Emrah Çelik, Güneş Başbağ","doi":"10.1007/s12666-024-03408-7","DOIUrl":null,"url":null,"abstract":"<p>For the first time, CuAlVMg high-temperature shape memory alloy (HTSMA) with unprecedented alloy composition and with extended solubility of vanadium element was fabricated as-cast ingot by arc melting method, then homogenization of the alloy in high β-phase temperature region and quenching in iced-brine water were performed, respectively. The characteristic forward martensite to austenite martensitic transformation (MT) temperatures were detected at around 390 °C, which put the novel alloy in the category of HTSMAs. The thermal response of the alloy at high-temperatures was observed by DTA test as coherent with usual Cu-based HTSMAs. The residual sub-eutectoid precipitations emerging at around 500 °C hindered the direct martensitic transformation. The martensite structure of the alloy was revealed by XRD, SEM and optical microscopy tests.</p>","PeriodicalId":23224,"journal":{"name":"Transactions of The Indian Institute of Metals","volume":"1 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of CuAlVMg High-Temperature Shape Memory Alloy Containing Low-Soluble Vanadium Addition\",\"authors\":\"Oktay Karaduman, Mustafa Boyrazli, Canan Aksu Canbay, İskender Özkul, Emrah Çelik, Güneş Başbağ\",\"doi\":\"10.1007/s12666-024-03408-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For the first time, CuAlVMg high-temperature shape memory alloy (HTSMA) with unprecedented alloy composition and with extended solubility of vanadium element was fabricated as-cast ingot by arc melting method, then homogenization of the alloy in high β-phase temperature region and quenching in iced-brine water were performed, respectively. The characteristic forward martensite to austenite martensitic transformation (MT) temperatures were detected at around 390 °C, which put the novel alloy in the category of HTSMAs. The thermal response of the alloy at high-temperatures was observed by DTA test as coherent with usual Cu-based HTSMAs. The residual sub-eutectoid precipitations emerging at around 500 °C hindered the direct martensitic transformation. The martensite structure of the alloy was revealed by XRD, SEM and optical microscopy tests.</p>\",\"PeriodicalId\":23224,\"journal\":{\"name\":\"Transactions of The Indian Institute of Metals\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of The Indian Institute of Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12666-024-03408-7\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of The Indian Institute of Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12666-024-03408-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

首次采用电弧熔炼法制造了具有前所未有的合金成分和更高钒元素溶解度的铜铝钒镁高温形状记忆合金(HTSMA)铸锭,然后分别进行了合金在高β相温度区的均匀化和在冰盐水中的淬火。检测到的正向马氏体到奥氏体马氏体转变(MT)特征温度约为 390 ℃,从而将这种新型合金归入了 HTSMA 类。通过 DTA 测试观察到,该合金在高温下的热反应与常见的铜基 HTSMA 一致。在 500 °C 左右出现的残余亚共晶析出阻碍了直接马氏体转变。合金的马氏体结构通过 XRD、SEM 和光学显微镜测试得以揭示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fabrication of CuAlVMg High-Temperature Shape Memory Alloy Containing Low-Soluble Vanadium Addition

For the first time, CuAlVMg high-temperature shape memory alloy (HTSMA) with unprecedented alloy composition and with extended solubility of vanadium element was fabricated as-cast ingot by arc melting method, then homogenization of the alloy in high β-phase temperature region and quenching in iced-brine water were performed, respectively. The characteristic forward martensite to austenite martensitic transformation (MT) temperatures were detected at around 390 °C, which put the novel alloy in the category of HTSMAs. The thermal response of the alloy at high-temperatures was observed by DTA test as coherent with usual Cu-based HTSMAs. The residual sub-eutectoid precipitations emerging at around 500 °C hindered the direct martensitic transformation. The martensite structure of the alloy was revealed by XRD, SEM and optical microscopy tests.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transactions of The Indian Institute of Metals
Transactions of The Indian Institute of Metals Materials Science-Metals and Alloys
CiteScore
2.60
自引率
6.20%
发文量
3
期刊介绍: Transactions of the Indian Institute of Metals publishes original research articles and reviews on ferrous and non-ferrous process metallurgy, structural and functional materials development, physical, chemical and mechanical metallurgy, welding science and technology, metal forming, particulate technologies, surface engineering, characterization of materials, thermodynamics and kinetics, materials modelling and other allied branches of Metallurgy and Materials Engineering. Transactions of the Indian Institute of Metals also serves as a forum for rapid publication of recent advances in all the branches of Metallurgy and Materials Engineering. The technical content of the journal is scrutinized by the Editorial Board composed of experts from various disciplines of Metallurgy and Materials Engineering. Editorial Advisory Board provides valuable advice on technical matters related to the publication of Transactions.
期刊最新文献
Effect of Impact Energy on the Interface Microstructure of Explosively Clad Mild Steel and Titanium Surface Characteristics of Low Plasticity Burnished Laser Directed Energy Deposition Alloy IN718 Enhancement of Elastic Modulus by TiC Reinforcement in Low-Density Steel Microstructure Evolution and Mechanical Properties of NiAl-TiB2 Nanocomposite Produced by Heat Treatment Post Mechanical Alloying Effect of Boron and its Influence on Mechanically Alloyed FeCo Nanocrystals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1