冷喷法制造的铜/镍复合涂层的微观结构和耐腐蚀性能

IF 1.6 4区 材料科学 Q2 Materials Science Transactions of The Indian Institute of Metals Pub Date : 2024-07-26 DOI:10.1007/s12666-024-03297-w
Mei-ting Wang, Bao-yi Yu, Li Zheng, Tao Huang, Dong-xu Chang
{"title":"冷喷法制造的铜/镍复合涂层的微观结构和耐腐蚀性能","authors":"Mei-ting Wang, Bao-yi Yu, Li Zheng, Tao Huang, Dong-xu Chang","doi":"10.1007/s12666-024-03297-w","DOIUrl":null,"url":null,"abstract":"<p>Cold spraying methods are used to prepare Cu/Ni composite coating on Q235 substrates. The porosity, micromorphology, and microhardness and corrosion properties of the copper coating prepared by cold spraying are studied. This experiment mainly explores the microstructure and corrosion resistance of Cu/Ni composite coatings prepared by different composition powder ratios. The heat treatment process of the coating was carried out to explore the effect of the heat treatment process on the microstructure and corrosion resistance of the coating. The results indicated that the porosity of the coating increases slightly with an increase in nickel powder content. The metal nickel plays an anodic protection role in the Cu/Ni battery. However, too much nickel will lead to too much anode material, and the overall structure of the coating will be destroyed after anode corrosion. The composite coating prepared with 40 wt% nickel powder has the best corrosion resistance. After heat treatment, the corrosion resistance of copper/nickel composite coatings is reduced, and the quality of the coatings is improved.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":23224,"journal":{"name":"Transactions of The Indian Institute of Metals","volume":"164 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure and Corrosion Resistance of Cu/Ni Composite Coating Fabricated by Cold Spray\",\"authors\":\"Mei-ting Wang, Bao-yi Yu, Li Zheng, Tao Huang, Dong-xu Chang\",\"doi\":\"10.1007/s12666-024-03297-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cold spraying methods are used to prepare Cu/Ni composite coating on Q235 substrates. The porosity, micromorphology, and microhardness and corrosion properties of the copper coating prepared by cold spraying are studied. This experiment mainly explores the microstructure and corrosion resistance of Cu/Ni composite coatings prepared by different composition powder ratios. The heat treatment process of the coating was carried out to explore the effect of the heat treatment process on the microstructure and corrosion resistance of the coating. The results indicated that the porosity of the coating increases slightly with an increase in nickel powder content. The metal nickel plays an anodic protection role in the Cu/Ni battery. However, too much nickel will lead to too much anode material, and the overall structure of the coating will be destroyed after anode corrosion. The composite coating prepared with 40 wt% nickel powder has the best corrosion resistance. After heat treatment, the corrosion resistance of copper/nickel composite coatings is reduced, and the quality of the coatings is improved.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":23224,\"journal\":{\"name\":\"Transactions of The Indian Institute of Metals\",\"volume\":\"164 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of The Indian Institute of Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12666-024-03297-w\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of The Indian Institute of Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12666-024-03297-w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

采用冷喷法在 Q235 基材上制备铜/镍复合涂层。研究了冷喷法制备的铜镀层的孔隙率、微观形貌、显微硬度和腐蚀性能。本实验主要探讨了不同成分粉末配比制备的铜/镍复合涂层的微观结构和耐腐蚀性能。并对涂层进行了热处理,以探讨热处理工艺对涂层微观结构和耐腐蚀性能的影响。结果表明,随着镍粉含量的增加,涂层的孔隙率略有增加。金属镍在铜/镍电池中起到阳极保护作用。然而,过多的镍会导致阳极材料过多,阳极腐蚀后涂层的整体结构将被破坏。用 40 wt% 的镍粉制备的复合涂层具有最好的耐腐蚀性。经过热处理后,铜/镍复合镀层的耐腐蚀性降低,镀层质量提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microstructure and Corrosion Resistance of Cu/Ni Composite Coating Fabricated by Cold Spray

Cold spraying methods are used to prepare Cu/Ni composite coating on Q235 substrates. The porosity, micromorphology, and microhardness and corrosion properties of the copper coating prepared by cold spraying are studied. This experiment mainly explores the microstructure and corrosion resistance of Cu/Ni composite coatings prepared by different composition powder ratios. The heat treatment process of the coating was carried out to explore the effect of the heat treatment process on the microstructure and corrosion resistance of the coating. The results indicated that the porosity of the coating increases slightly with an increase in nickel powder content. The metal nickel plays an anodic protection role in the Cu/Ni battery. However, too much nickel will lead to too much anode material, and the overall structure of the coating will be destroyed after anode corrosion. The composite coating prepared with 40 wt% nickel powder has the best corrosion resistance. After heat treatment, the corrosion resistance of copper/nickel composite coatings is reduced, and the quality of the coatings is improved.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transactions of The Indian Institute of Metals
Transactions of The Indian Institute of Metals Materials Science-Metals and Alloys
CiteScore
2.60
自引率
6.20%
发文量
3
期刊介绍: Transactions of the Indian Institute of Metals publishes original research articles and reviews on ferrous and non-ferrous process metallurgy, structural and functional materials development, physical, chemical and mechanical metallurgy, welding science and technology, metal forming, particulate technologies, surface engineering, characterization of materials, thermodynamics and kinetics, materials modelling and other allied branches of Metallurgy and Materials Engineering. Transactions of the Indian Institute of Metals also serves as a forum for rapid publication of recent advances in all the branches of Metallurgy and Materials Engineering. The technical content of the journal is scrutinized by the Editorial Board composed of experts from various disciplines of Metallurgy and Materials Engineering. Editorial Advisory Board provides valuable advice on technical matters related to the publication of Transactions.
期刊最新文献
Effect of Impact Energy on the Interface Microstructure of Explosively Clad Mild Steel and Titanium Surface Characteristics of Low Plasticity Burnished Laser Directed Energy Deposition Alloy IN718 Enhancement of Elastic Modulus by TiC Reinforcement in Low-Density Steel Microstructure Evolution and Mechanical Properties of NiAl-TiB2 Nanocomposite Produced by Heat Treatment Post Mechanical Alloying Effect of Boron and its Influence on Mechanically Alloyed FeCo Nanocrystals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1