Sang-Mi Jeong, Jonguk Yang, Youngsoo Kang, Hee Sung Seo, Keumyoung Seo, Taekyung Lim, Sanghyun Ju
{"title":"通过血管模拟实现手部假肢和仿人机器人的体温调节一体化","authors":"Sang-Mi Jeong, Jonguk Yang, Youngsoo Kang, Hee Sung Seo, Keumyoung Seo, Taekyung Lim, Sanghyun Ju","doi":"10.1038/s41427-024-00558-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we introduce an innovative approach for generating robotic faces with a thermal signature similar to that of humans and equipping prosthetic or robotic hands with a lifelike temperature distribution. This approach enhances their detection via infrared cameras and promotes more natural interactions between humans and robots. This method integrates a temperature regulation system into artificial skin, drawing inspiration from the human body’s natural temperature control via blood flow. Central to this technique is a fiber network simulating blood vessels within the artificial skin. Water flows through these fibers under specific temperature and flow conditions, forming a controlled heat release system. The heat emission can be adjusted by changing the dilation of these fibers, primarily by modulating the frequency of circulation. Our findings indicate that this approach can replicate the varied thermal characteristics of different human faces and hand areas. Consequently, the robotic faces appear more human-like in infrared images, aiding their identification by infrared cameras. At the same time, the prosthetic hands achieve a more natural temperature, reducing the discomfort typically felt in direct contact with synthetic limbs. The aim of this study was to address the challenges faced by the users of prosthetic hands. The results from this study show a promising direction in humanoid robotics, fostering improved tactile interactions and redefining human–robot relationships. This innovative technique facilitates further advancements, blurring the lines between artificial aids and natural biological systems.</p>","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"67 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermoregulatory integration in hand prostheses and humanoid robots through blood vessel simulation\",\"authors\":\"Sang-Mi Jeong, Jonguk Yang, Youngsoo Kang, Hee Sung Seo, Keumyoung Seo, Taekyung Lim, Sanghyun Ju\",\"doi\":\"10.1038/s41427-024-00558-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we introduce an innovative approach for generating robotic faces with a thermal signature similar to that of humans and equipping prosthetic or robotic hands with a lifelike temperature distribution. This approach enhances their detection via infrared cameras and promotes more natural interactions between humans and robots. This method integrates a temperature regulation system into artificial skin, drawing inspiration from the human body’s natural temperature control via blood flow. Central to this technique is a fiber network simulating blood vessels within the artificial skin. Water flows through these fibers under specific temperature and flow conditions, forming a controlled heat release system. The heat emission can be adjusted by changing the dilation of these fibers, primarily by modulating the frequency of circulation. Our findings indicate that this approach can replicate the varied thermal characteristics of different human faces and hand areas. Consequently, the robotic faces appear more human-like in infrared images, aiding their identification by infrared cameras. At the same time, the prosthetic hands achieve a more natural temperature, reducing the discomfort typically felt in direct contact with synthetic limbs. The aim of this study was to address the challenges faced by the users of prosthetic hands. The results from this study show a promising direction in humanoid robotics, fostering improved tactile interactions and redefining human–robot relationships. This innovative technique facilitates further advancements, blurring the lines between artificial aids and natural biological systems.</p>\",\"PeriodicalId\":19382,\"journal\":{\"name\":\"Npg Asia Materials\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Npg Asia Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41427-024-00558-4\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npg Asia Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41427-024-00558-4","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Thermoregulatory integration in hand prostheses and humanoid robots through blood vessel simulation
In this paper, we introduce an innovative approach for generating robotic faces with a thermal signature similar to that of humans and equipping prosthetic or robotic hands with a lifelike temperature distribution. This approach enhances their detection via infrared cameras and promotes more natural interactions between humans and robots. This method integrates a temperature regulation system into artificial skin, drawing inspiration from the human body’s natural temperature control via blood flow. Central to this technique is a fiber network simulating blood vessels within the artificial skin. Water flows through these fibers under specific temperature and flow conditions, forming a controlled heat release system. The heat emission can be adjusted by changing the dilation of these fibers, primarily by modulating the frequency of circulation. Our findings indicate that this approach can replicate the varied thermal characteristics of different human faces and hand areas. Consequently, the robotic faces appear more human-like in infrared images, aiding their identification by infrared cameras. At the same time, the prosthetic hands achieve a more natural temperature, reducing the discomfort typically felt in direct contact with synthetic limbs. The aim of this study was to address the challenges faced by the users of prosthetic hands. The results from this study show a promising direction in humanoid robotics, fostering improved tactile interactions and redefining human–robot relationships. This innovative technique facilitates further advancements, blurring the lines between artificial aids and natural biological systems.
期刊介绍:
NPG Asia Materials is an open access, international journal that publishes peer-reviewed review and primary research articles in the field of materials sciences. The journal has a global outlook and reach, with a base in the Asia-Pacific region to reflect the significant and growing output of materials research from this area. The target audience for NPG Asia Materials is scientists and researchers involved in materials research, covering a wide range of disciplines including physical and chemical sciences, biotechnology, and nanotechnology. The journal particularly welcomes high-quality articles from rapidly advancing areas that bridge the gap between materials science and engineering, as well as the classical disciplines of physics, chemistry, and biology. NPG Asia Materials is abstracted/indexed in Journal Citation Reports/Science Edition Web of Knowledge, Google Scholar, Chemical Abstract Services, Scopus, Ulrichsweb (ProQuest), and Scirus.