Yi Cheng, Qiong Pan, Jie Li, Nan Zhang, Yang Yang, Jiawei Wang, Ningbo Gao
{"title":"机器学习为塑料热液预处理建模提供了便利,有助于建造船上海洋垃圾甲醇工厂","authors":"Yi Cheng, Qiong Pan, Jie Li, Nan Zhang, Yang Yang, Jiawei Wang, Ningbo Gao","doi":"10.1007/s11705-024-2468-3","DOIUrl":null,"url":null,"abstract":"<div><p>An onboard facility shows promise in efficiently converting floating plastics into valuable products, such as methanol, negating the need for regional transport and land-based treatment. Gasification presents an effective means of processing plastics, requiring their transformation into gasification-compatible feedstock, such as hydrochar. This study explores hydrochar composition modeling, utilizing advanced algorithms and rigorous analyses to unravel the intricacies of elemental composition ratios, identify influential factors, and optimize hydrochar production processes. The investigation begins with decision tree modeling, which successfully captures relationships but encounters overfitting challenges. Nevertheless, the decision tree vote analysis, particularly for the H/C ratio, yielding an impressive <i>R</i><sup>2</sup> of 0.9376. Moreover, the research delves into the economic feasibility of the marine plastics-to-methanol process. Varying payback periods, driven by fluctuating methanol prices observed over a decade (ranging from 3.3 to 7 yr for hydrochar production plants), are revealed. Onboard factories emerge as resilient solutions, capitalizing on marine natural gas resources while striving for near-net-zero emissions. This comprehensive study advances our understanding of hydrochar composition and offers insights into the economic potential of environmentally sustainable marine plastics-to-methanol processes.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 10","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11705-024-2468-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Machine learning facilitated the modeling of plastics hydrothermal pretreatment toward constructing an on-ship marine litter-to-methanol plant\",\"authors\":\"Yi Cheng, Qiong Pan, Jie Li, Nan Zhang, Yang Yang, Jiawei Wang, Ningbo Gao\",\"doi\":\"10.1007/s11705-024-2468-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An onboard facility shows promise in efficiently converting floating plastics into valuable products, such as methanol, negating the need for regional transport and land-based treatment. Gasification presents an effective means of processing plastics, requiring their transformation into gasification-compatible feedstock, such as hydrochar. This study explores hydrochar composition modeling, utilizing advanced algorithms and rigorous analyses to unravel the intricacies of elemental composition ratios, identify influential factors, and optimize hydrochar production processes. The investigation begins with decision tree modeling, which successfully captures relationships but encounters overfitting challenges. Nevertheless, the decision tree vote analysis, particularly for the H/C ratio, yielding an impressive <i>R</i><sup>2</sup> of 0.9376. Moreover, the research delves into the economic feasibility of the marine plastics-to-methanol process. Varying payback periods, driven by fluctuating methanol prices observed over a decade (ranging from 3.3 to 7 yr for hydrochar production plants), are revealed. Onboard factories emerge as resilient solutions, capitalizing on marine natural gas resources while striving for near-net-zero emissions. This comprehensive study advances our understanding of hydrochar composition and offers insights into the economic potential of environmentally sustainable marine plastics-to-methanol processes.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":571,\"journal\":{\"name\":\"Frontiers of Chemical Science and Engineering\",\"volume\":\"18 10\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11705-024-2468-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Chemical Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11705-024-2468-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-024-2468-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Machine learning facilitated the modeling of plastics hydrothermal pretreatment toward constructing an on-ship marine litter-to-methanol plant
An onboard facility shows promise in efficiently converting floating plastics into valuable products, such as methanol, negating the need for regional transport and land-based treatment. Gasification presents an effective means of processing plastics, requiring their transformation into gasification-compatible feedstock, such as hydrochar. This study explores hydrochar composition modeling, utilizing advanced algorithms and rigorous analyses to unravel the intricacies of elemental composition ratios, identify influential factors, and optimize hydrochar production processes. The investigation begins with decision tree modeling, which successfully captures relationships but encounters overfitting challenges. Nevertheless, the decision tree vote analysis, particularly for the H/C ratio, yielding an impressive R2 of 0.9376. Moreover, the research delves into the economic feasibility of the marine plastics-to-methanol process. Varying payback periods, driven by fluctuating methanol prices observed over a decade (ranging from 3.3 to 7 yr for hydrochar production plants), are revealed. Onboard factories emerge as resilient solutions, capitalizing on marine natural gas resources while striving for near-net-zero emissions. This comprehensive study advances our understanding of hydrochar composition and offers insights into the economic potential of environmentally sustainable marine plastics-to-methanol processes.
期刊介绍:
Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.