{"title":"信贷市场状况、预期回报替代物和银行股回报率","authors":"Huan Yang , Jun Cai , Lin Huang , Alan J. Marcus","doi":"10.1016/j.gfj.2024.101021","DOIUrl":null,"url":null,"abstract":"<div><p>We evaluate the performance of expected return proxies during extreme credit market conditions and extreme phases of business cycles when realized returns on banks stocks are large in absolute value. We construct three sets of expected return proxies for individual bank stocks: (i) characteristic-based proxies; (ii) standard risk-factor-based proxies; and (iii) risk-factor-based proxies in which betas depend on firm characteristics. Based on the newly developed minimum error variance (MEV) criterion (Lee et al., 2020), the best performing expected return proxy is the risk-factor-based model that allows betas to vary with firm characteristics. We also examine whether these three expected return proxies can capture actual returns during either extreme credit market or extreme business-cycle conditions. We find that both risk-factor-based proxies explain returns better than characteristic-based proxies during these periods.</p></div>","PeriodicalId":46907,"journal":{"name":"Global Finance Journal","volume":"62 ","pages":"Article 101021"},"PeriodicalIF":5.5000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Credit market conditions, expected return proxies, and bank stock returns\",\"authors\":\"Huan Yang , Jun Cai , Lin Huang , Alan J. Marcus\",\"doi\":\"10.1016/j.gfj.2024.101021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We evaluate the performance of expected return proxies during extreme credit market conditions and extreme phases of business cycles when realized returns on banks stocks are large in absolute value. We construct three sets of expected return proxies for individual bank stocks: (i) characteristic-based proxies; (ii) standard risk-factor-based proxies; and (iii) risk-factor-based proxies in which betas depend on firm characteristics. Based on the newly developed minimum error variance (MEV) criterion (Lee et al., 2020), the best performing expected return proxy is the risk-factor-based model that allows betas to vary with firm characteristics. We also examine whether these three expected return proxies can capture actual returns during either extreme credit market or extreme business-cycle conditions. We find that both risk-factor-based proxies explain returns better than characteristic-based proxies during these periods.</p></div>\",\"PeriodicalId\":46907,\"journal\":{\"name\":\"Global Finance Journal\",\"volume\":\"62 \",\"pages\":\"Article 101021\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Finance Journal\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044028324000930\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Finance Journal","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044028324000930","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Credit market conditions, expected return proxies, and bank stock returns
We evaluate the performance of expected return proxies during extreme credit market conditions and extreme phases of business cycles when realized returns on banks stocks are large in absolute value. We construct three sets of expected return proxies for individual bank stocks: (i) characteristic-based proxies; (ii) standard risk-factor-based proxies; and (iii) risk-factor-based proxies in which betas depend on firm characteristics. Based on the newly developed minimum error variance (MEV) criterion (Lee et al., 2020), the best performing expected return proxy is the risk-factor-based model that allows betas to vary with firm characteristics. We also examine whether these three expected return proxies can capture actual returns during either extreme credit market or extreme business-cycle conditions. We find that both risk-factor-based proxies explain returns better than characteristic-based proxies during these periods.
期刊介绍:
Global Finance Journal provides a forum for the exchange of ideas and techniques among academicians and practitioners and, thereby, advances applied research in global financial management. Global Finance Journal publishes original, creative, scholarly research that integrates theory and practice and addresses a readership in both business and academia. Articles reflecting pragmatic research are sought in areas such as financial management, investment, banking and financial services, accounting, and taxation. Global Finance Journal welcomes contributions from scholars in both the business and academic community and encourages collaborative research from this broad base worldwide.