用于提高钒氧化还原液流电池(VRFB)性能的 2-丙烯酰胺基-2-甲基丙烷磺酸(AMPS)接枝聚偏二氟乙烯(PVDF)膜

Sarthak Mishra , Jeet Sharma , Prashant Upadhyay , Vaibhav Kulshrestha
{"title":"用于提高钒氧化还原液流电池(VRFB)性能的 2-丙烯酰胺基-2-甲基丙烷磺酸(AMPS)接枝聚偏二氟乙烯(PVDF)膜","authors":"Sarthak Mishra ,&nbsp;Jeet Sharma ,&nbsp;Prashant Upadhyay ,&nbsp;Vaibhav Kulshrestha","doi":"10.1016/j.nxener.2024.100164","DOIUrl":null,"url":null,"abstract":"<div><p>Polymer modification techniques are crucial for customizing material properties to suit specific applications, particularly in energy storage systems. This study investigates the modification of poly(vinylidene fluoride) (PVDF) membranes via atom transfer radical polymerization (ATRP) to graft 2-acrylamido-2-methylpropane sulfonic acid (AMPS) onto the fluorinated backbone. The successful grafting was confirmed via nuclear magnetic resonance (NMR) spectroscopy, while the membrane structure was evaluated using infrared (IR) and X-ray photoelectron spectroscopies (XPS). Thermogravimetric analysis (TGA) and universal testing machine (UTM) tests verified the thermal and mechanical stability of the membranes. Electrochemical analysis showed sustained performance over 300 cycles. The FluorCat-25 membrane demonstrated high coulombic efficiency (&gt;98 %), voltage efficiency (83 %), and energy efficiency (81 %) at a current density of 100 mA cm<sup>−2</sup>. Notably, FluorCat-25 achieved a peak power density of 353 mW cm⁻², surpassing that of Nafion-117 (304 mW cm⁻²), with &gt;85 % capacity retention, indicating its superior performance and suitability for VRFB applications. These findings position FluorCat-25 as a promising candidate for efficient and durable energy storage solutions in VRFB technology.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"5 ","pages":"Article 100164"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000693/pdfft?md5=2cf14ce563287ef901746a7526e8e9fc&pid=1-s2.0-S2949821X24000693-main.pdf","citationCount":"0","resultStr":"{\"title\":\"2-Acrylamido-2-methylpropane sulfonic acid (AMPS) grafted poly(vinylidene fluoride) (PVDF) membrane for improved vanadium redox flow battery (VRFB) performance\",\"authors\":\"Sarthak Mishra ,&nbsp;Jeet Sharma ,&nbsp;Prashant Upadhyay ,&nbsp;Vaibhav Kulshrestha\",\"doi\":\"10.1016/j.nxener.2024.100164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Polymer modification techniques are crucial for customizing material properties to suit specific applications, particularly in energy storage systems. This study investigates the modification of poly(vinylidene fluoride) (PVDF) membranes via atom transfer radical polymerization (ATRP) to graft 2-acrylamido-2-methylpropane sulfonic acid (AMPS) onto the fluorinated backbone. The successful grafting was confirmed via nuclear magnetic resonance (NMR) spectroscopy, while the membrane structure was evaluated using infrared (IR) and X-ray photoelectron spectroscopies (XPS). Thermogravimetric analysis (TGA) and universal testing machine (UTM) tests verified the thermal and mechanical stability of the membranes. Electrochemical analysis showed sustained performance over 300 cycles. The FluorCat-25 membrane demonstrated high coulombic efficiency (&gt;98 %), voltage efficiency (83 %), and energy efficiency (81 %) at a current density of 100 mA cm<sup>−2</sup>. Notably, FluorCat-25 achieved a peak power density of 353 mW cm⁻², surpassing that of Nafion-117 (304 mW cm⁻²), with &gt;85 % capacity retention, indicating its superior performance and suitability for VRFB applications. These findings position FluorCat-25 as a promising candidate for efficient and durable energy storage solutions in VRFB technology.</p></div>\",\"PeriodicalId\":100957,\"journal\":{\"name\":\"Next Energy\",\"volume\":\"5 \",\"pages\":\"Article 100164\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949821X24000693/pdfft?md5=2cf14ce563287ef901746a7526e8e9fc&pid=1-s2.0-S2949821X24000693-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949821X24000693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X24000693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

聚合物改性技术对于定制材料特性以适应特定应用(尤其是储能系统)至关重要。本研究通过原子转移自由基聚合(ATRP)将 2-丙烯酰胺基-2-甲基丙烷磺酸(AMPS)接枝到氟化骨架上,对聚偏二氟乙烯(PVDF)膜进行改性。通过核磁共振(NMR)光谱证实了接枝的成功,同时使用红外(IR)和 X 射线光电子能谱(XPS)对膜结构进行了评估。热重分析(TGA)和万能试验机(UTM)测试验证了膜的热稳定性和机械稳定性。电化学分析表明,膜在 300 个循环周期内具有持续的性能。在 100 mA cm 的电流密度下,FluorCat-25 膜表现出很高的库仑效率(>98%)、电压效率(83%)和能量效率(81%)。值得注意的是,FluorCat-25 的峰值功率密度达到了 353 mW cm-²,超过了 Nafion-117(304 mW cm-²),容量保持率大于 85%,这表明其性能优越,适用于 VRFB 应用。这些研究结果使 FluorCat-25 成为 VRFB 技术中高效耐用储能解决方案的理想候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2-Acrylamido-2-methylpropane sulfonic acid (AMPS) grafted poly(vinylidene fluoride) (PVDF) membrane for improved vanadium redox flow battery (VRFB) performance

Polymer modification techniques are crucial for customizing material properties to suit specific applications, particularly in energy storage systems. This study investigates the modification of poly(vinylidene fluoride) (PVDF) membranes via atom transfer radical polymerization (ATRP) to graft 2-acrylamido-2-methylpropane sulfonic acid (AMPS) onto the fluorinated backbone. The successful grafting was confirmed via nuclear magnetic resonance (NMR) spectroscopy, while the membrane structure was evaluated using infrared (IR) and X-ray photoelectron spectroscopies (XPS). Thermogravimetric analysis (TGA) and universal testing machine (UTM) tests verified the thermal and mechanical stability of the membranes. Electrochemical analysis showed sustained performance over 300 cycles. The FluorCat-25 membrane demonstrated high coulombic efficiency (>98 %), voltage efficiency (83 %), and energy efficiency (81 %) at a current density of 100 mA cm−2. Notably, FluorCat-25 achieved a peak power density of 353 mW cm⁻², surpassing that of Nafion-117 (304 mW cm⁻²), with >85 % capacity retention, indicating its superior performance and suitability for VRFB applications. These findings position FluorCat-25 as a promising candidate for efficient and durable energy storage solutions in VRFB technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Potential uses of perovskite-based photovoltaics for hydrogen production: A pathway to sustainable energy solutions Experiments on a discretized 3D compound parabolic concentrator with a sensible heat storage Enhanced electrochemical performance of polycrystalline NCM811 cathode at high voltage through Te-doped LiNbO3 coating for lithium-ion batteries Lithium-ion batteries operating at ultrawide temperature range from −90 to +90 °C Influence of phenol-formaldehyde and melamine-formaldehyde resins on the gasification of high-pressure laminate waste materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1